Question

s Q. Find the entropy and/or temperature of steam at the following states Region k/kg K) 5 MPa 1 MPa 18 MPa 400°C 40 kPa 40 k

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(Si aj- P: 5 Mra ,Ts120°C Naher s in Sub cooled reg ion From rabte of pxopeties of subcoeted water , enropy C) can be iven a2. tabie 7-3588 - 302S 3 eqOA super h ecde steam i 2. Thu From Superheabed steon taole , S- 8-03094 KT/egk from above T-S dAnl enthal py Chu) Torbine orkC can be Biven by W- 3698.555-254 33y 152 22 46 j/c9

Add a comment
Know the answer?
Add Answer to:
S Q. Find the entropy and/or temperature of steam at the following states Region k/kg K) 5 MPa 1 ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A steam turbine operates with P1 = 5 MPa and T1 = 600 °C at the...

    A steam turbine operates with P1 = 5 MPa and T1 = 600 °C at the inlet, an exit pressure of P2 = 100 kPa, a mass flow rate of ?̇ = 100 kg/s, and an isentropic efficiency of η = 85%. Complete a thermodynamic analysis of the turbine, using the appropriate data for water, by finding: (A) The temperature at the exit, T2, (B) the work produced by the turbine, ?̇ ?, and (C) the rate of entropy production...

  • Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s

    Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s, and leaves at 150 kPa and 350 m/s. The isentropic efficiency of the turbine is 85%. Neglect potential energy. (I) Determine the exit temperature of the steam, and its quality (if saturated mixture)  (ii) Calculate the actual power output of the turbine, in kW (iii)  Illustrate a T-s diagram with respect to saturation lines for the isentropic process by clearly indicating all pressure, temperature,...

  • An industrial steam turbine shown in the figure below receives 20 [kg/s] of superheated steam at...

    An industrial steam turbine shown in the figure below receives 20 [kg/s] of superheated steam at 10 [MPa) and 500 [°C] (State 1). Steam is extracted for another industrial process at a rate of 5 kg/s) ata location in the turbine where the pressure is 1 [MPa) and the temperature is 200 [°C] (State 21. The remaining steam continues to expand through the turbine and exit at State 3, where the pressure is 10 [kPa) and the quality is 90%....

  • Homework 2 Problem 1: A piston-cylinder device initially contains 0.35-kg steam at 3.5 MPa, superheated by...

    Homework 2 Problem 1: A piston-cylinder device initially contains 0.35-kg steam at 3.5 MPa, superheated by 7.4 C. Now the stream loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 200C. Determine (a) the final pressure and the quality (if mixture), (b) the boundary work, (c) the amount of heat transfer when the piston first hits...

  • An insulated steam turbine receives 30 kg of steam per second at 3 MPa, 350 °C....

    An insulated steam turbine receives 30 kg of steam per second at 3 MPa, 350 °C. At the point in the turbine where the pressure is 0.5 MPa, steam is bled off for processing equipment at the rate of 5 kg/s. The temperature of this steam is 200 °C. The balance of the steam leaves the turbine at 15 kPa, 90% quality. Determine the exergy per kilogram of the steam entering and at both points at which steam leaves the...

  • 3.) A steam of 80% quality at 300 kPa and a mass of 3 Kg is...

    3.) A steam of 80% quality at 300 kPa and a mass of 3 Kg is heated at constant pressure until the temperature increased 66.5 Co. Calculate the change in entropy due to the heating process. 2. Determine if the process reversable, irreversible or impossible. 3. Plot the TS diagram showing all the states and numbers on it. 4.) A 0.5 kg of saturated water vapor at 300°C is heated in a piston-cylinder device. Now the steam expanded reversibly and...

  • 3.) A steam of 80% quality at 300 kPa and a mass of 3 Kg is...

    3.) A steam of 80% quality at 300 kPa and a mass of 3 Kg is heated at constant pressure until the temperature increased 66.5 Calculate the change in entropy due to the heating process. 2. Determine if the process reversable, irreversible or impossible. 3. Plot the TS diagram showing all the states and numbers on it. 4) A 0.5 kg of saturated water vapor at 300°C is heated in a piston-cylinder device. Now the steam expanded reversibly and isothermally...

  • 1 kg/s of steam with P = 1 MPa and x = 50% enters is expanded through a valve to 100 kPa. Find th...

    1 kg/s of steam with P = 1 MPa and x = 50% enters is expanded through a valve to 100 kPa. Find the final temperature (°C) and entropy generated (kl/kgK) 1 kg/s of steam with P = 1 MPa and x = 50% enters is expanded through a valve to 100 kPa. Find the final temperature (°C) and entropy generated (kl/kgK)

  • 1. (20 points) Consider a cogeneration system operating at steady state. Superheated steam enters the first...

    1. (20 points) Consider a cogeneration system operating at steady state. Superheated steam enters the first turbine stage at 6 MPa, 540 °C. Between the first and second stages, 45% of the steam is extracted at 500 kPa and diverted to a process heating load of 5 x 108 kl/h. Condensate exits the process heat exchanger at 450 kPa with specific enthalpy of 589.13 kl/kg and is mixed with liquid exiting the lower pressure pump at 450 kPa. The entire...

  • 1. (20 points) Consider a cogeneration system operating at steady state. Superheated steam enters the first...

    1. (20 points) Consider a cogeneration system operating at steady state. Superheated steam enters the first turbine stage at 6 MPa, 540 °C. Between the first and second stages, 45% of the steam is extracted at 500 kPa and diverted to a process heating load of 5 x 108 kl/h. Condensate exits the process heat exchanger at 450 kPa with specific enthalpy of 589.13 kl/kg and is mixed with liquid exiting the lower pressure pump at 450 kPa. The entire...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT