Question

For the following system: -13 1 0 x(t)30 01x(t)u(t) y(t)=[1 이 x(t) 0 a. Determine if the system is completely controllable. b

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sorutton tue no thatoemodeuru be 0o130 30 0 C-3 we know tha CTT So g9ven Po: 1.5% :0.015 19--8T Souase on both Sides (en7-64 0.8 50 OY ue knou> Ihat So 4 4 0-66チ 0.667 knct)-5 9o SI-A S0 -13 O 00 30 0 S+131 o 3090 S198S+5+5-990Compave eaation (3a ue ge K2+3K3+30 12-9 29 S.16 So ()-kult) k-L-245./64, 33,23ะ, 4974)

Add a comment
Know the answer?
Add Answer to:
For the following system: -13 1 0 x(t)30 01x(t)u(t) y(t)=[1 이 x(t) 0 a. Determine if the system ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Show all steps and solution clearly: 2. For the following system: T-13 1 07 x(t) =...

    Show all steps and solution clearly: 2. For the following system: T-13 1 07 x(t) = -30 0 1 x(t) + Ou(t) 10 00 y(t) = [1 0 0] x(t) a. Determine if the system is completely controllable. b. If the system is completely controllable, design a state feedback regulator of the form u(t) = -Kx(t) to meet the following performance criteria: • %PO = 1.5% . Ts = 0.667 sec

  • Consider the LTI system. Design a state-feedback control law of the form u(t)= -kx(t) such that...

    Consider the LTI system. Design a state-feedback control law of the form u(t)= -kx(t) such that x(t) goes to zero faster than e^-t; Problem 1: (15 points) Consider the LTI system 3 -1 (t)1 3 0 (t)2ut 0 0-1 Desig lim sate-feedback control law of the form u(t)ka(t) such that (t goes to zero faster than e i.e. Hint: fhink of where you want to place the eigenvalues of the closed-loop system.

  • Consider the following system: -1-2-21 гг 1 0 1 L Where u is the system input and y is the measur...

    control system with observer Consider the following system: -1-2-21 гг 1 0 1 L Where u is the system input and y is the measured output. 1. Find the transfer function of the system. 2. Design a state feedback controller with a full-state observer such that the step response of the closed loop system is second order dominant with an overshoot Mp settling time ts s 5 sec. Represent the observer-based control system in a compact state space form. 10%...

  • 1. Consider the system described by: *(t) - 6 m (0) + veu(t): y(t) = 01...

    1. Consider the system described by: *(t) - 6 m (0) + veu(t): y(t) = 01 (1) 60 = {1, 1421 a) Find the state transition matrix and the impulse response matrix of the system. b) Determine whether the system is (i) completely state controllable, (ii) differentially control- lable, (iii) instantaneously controllable, (iv) stabilizable at time to = 0. c) Repeat part (b) for to = 1. d) Determine whether the system is (i) observable, (ii) differentially observable, (iii) instanta-...

  • The transfer function of a linear system is G(s) = Y(s) S-1 U(s) 5? + 4s...

    The transfer function of a linear system is G(s) = Y(s) S-1 U(s) 5? + 4s +3 a. Express this system in the modal form. b. Express this system in the standard controllable form (SCF). (Parts d, e, f, and g use this system) c. In the standard controllable form, suppose the output is replaced by y=[-1 a] | [x2] Give a value for a which makes the system unobservable. d. What is y(t) if y(0-)=-3, ay = 6 and...

  • 3. Consider a system with the following state equation h(t)] [0 0 21 [X1(t) [x1(t) y(t)...

    3. Consider a system with the following state equation h(t)] [0 0 21 [X1(t) [x1(t) y(t) [0.1 0 0.1x2(t) X3(t) The unit step response is required to have a settling time of less than 2 seconds and a percent overshoot of less than 5%. In addition a zero steady-state error is needed. The goal is to design the state feedback control law in the form of u(t) Kx(t) + Gr(t) (a) Find the desired regon of the S-plane for two...

  • 5- For the following system: x( Input: x(t)s u(t) Output: y() With the initial condition y(0) 1...

    5- For the following system: x( Input: x(t)s u(t) Output: y() With the initial condition y(0) 1, y(O)-0, RI-1, R2-12, CI-2F, C2-1F. Identify the natural and forced response of the system a) Find the zero input response. b) Unit impulse response. c) zero state response. d) The total response. e Identify the natural and forced response of the system. 5- For the following system: x( Input: x(t)s u(t) Output: y() With the initial condition y(0) 1, y(O)-0, RI-1, R2-12, CI-2F,...

  • 2. (30%) In the following system, tn A/D ZOH tipl = u(nT), yin] = y(nT), T...

    2. (30%) In the following system, tn A/D ZOH tipl = u(nT), yin] = y(nT), T = 2 sec, and P--2 0 Find the ZOH-equivalent discrete-time system in state-space form).

  • 6. Consider a state-space system x = Ax+ Bu, y = Cx for which the control...

    6. Consider a state-space system x = Ax+ Bu, y = Cx for which the control input is defined as u- -Kx + r, with r(t) a reference input. This results in a closed-loop system x (A-BK)x(t)+ Br(t) = with matrices 2 -2 K=[k1 K2 For this type of controller, ki, k2 ER do not need to be restricted to positive numbers - any real number is fine (a) What is the characteristic equation of the closed-loop system, in terms...

  • find the following: a)state transition matrix? b)output as function of time? c)design a state feedback controller to...

    find the following: a)state transition matrix? b)output as function of time? c)design a state feedback controller to place closed loop at (-3) and (-5) Question (: (10 hO Considering the following system, 01x + 0 t<0 tt t20 Where x(0)-L1] , u(t)-(% ,u(t) a) Find the state transition matrix. (3 marks) b) Find the output as a function of time. (3 marks) c) Design a state feedback controller to place the closed loop poles at (-3) and (-5). (4 marks)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT