Question

Question (: (10 hO Considering the following system, 01x + 0 t<0 tt t20 Where x(0)-L1] , u(t)-(% ,u(t) a) Find the state tran

find the following:
a)state transition matrix?
b)output as function of time?
c)design a state feedback controller to place closed loop at (-3) and (-5)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Question a and question b have been solved with proper explanation.

4 to ta) fimd the atate tramaition matrix Sti O St 2 0 S叶」 S +2 SI-A St 1 s-t 1 -2t 2 イ2 l_r_2. 0 0 224 St 1 stI s1(st)s-t 1 3 2, 2, 2, Stu 11从(+ Two ơntput as a umctionof time

Add a comment
Know the answer?
Add Answer to:
find the following: a)state transition matrix? b)output as function of time? c)design a state feedback controller to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a-represent system in state space form? b-find output response y(t? c-design a state feedback gain controller? 3- A dyn...

    a-represent system in state space form? b-find output response y(t? c-design a state feedback gain controller? 3- A dynamic system is described by the following set of coupled linear ordinary differential equations: x1 + 2x1-4x2-5u x1-x2 + 4x1 + x2 = 5u EDQMS 2/3 Page 1 of 2 a. Represent the system in state-space form. b. For u(t) =1 and initial condition state vector x(0) = LII find the outp (10 marks) response y(t). c. Design a state feedback gain...

  • Problem 2 We have seen in class an algorithm for the design of state feedback controller using po...

    Problem 2 We have seen in class an algorithm for the design of state feedback controller using pole placement for multi-input systems. Consider the system-A Bu with 0 0 4 1. Using the algorithm seen in class, design a state feedback control K, or the gain K, to place the closed loop poles at-2,-3,-4. 2. Exploiting the structure of A and B, find a different feedback gain that place the poles in the same location. This steps shows that there...

  • - 4. Full State Feedback and Observer Design Consider the plant s + 1 G(s)- (s + a(s +8(s +10) where a-1. a) Find a...

    - 4. Full State Feedback and Observer Design Consider the plant s + 1 G(s)- (s + a(s +8(s +10) where a-1. a) Find a convenient state space representation of model G(s) . b) Using place design a controller for the system that puts the poles at -1 and-2 +-2 . c) Using place design an observer with poles at-10,-11 and-12 d) Simulate the states with the state estimates overlaid e)Find a state space representation of the closed loop system...

  • Problem 2 design of state feedback controller using pole placement for multi-input systems. Consi...

    Problem 2 design of state feedback controller using pole placement for multi-input systems. Consider the system-Ar-Bu with 1. design a state feedback control u-Kr, or the gain K, to place the closed loop poles at -2,-3,-4 2. Exploiting the structure of A and B, find a different feedback gain that place the poles in the same location. This steps shows that there are several ways to design K; by inspection for instance. 3. Use the Matlab command 'place' to generate...

  • D9.2 Design a state-feedback controller for the following systems. Determine the controller gains, open-loop transfer functions,...

    D9.2 Design a state-feedback controller for the following systems. Determine the controller gains, open-loop transfer functions, and closed-loop transfer functions Use the open-loop transfer functions to obtain root locus, Bode plots, and gain and phase margins LU u=-kx + r Closed-loop poles at s --1tj 2

  • Design a state feedback control u=-Kx, Find K, that could place the closed loop poles at-21 -3,-4...

    the place poles are -2 ; -3 ; -4 Design a state feedback control u=-Kx, Find K, that could place the closed loop poles at-21 -3,-4 Given that: Consider the systemi Ar Bu with A-10-201. B-10 1 2) Exploiting the structure of A and B, find a different feedback gain that place the poles in the same location. This steps shows that there are several ways to design K; by inspection for instance. Design a state feedback control u=-Kx, Find...

  • Consider the following transfer function of a linear control system 1- Determine the state feedb...

    Consider the following transfer function of a linear control system 1- Determine the state feedback gain matrix that places the closed system at s=-32, -3.234 ± j3.3. 2- Design a full order observer which produces a set of desired closed loop poles at s=-16, -16.15±j16.5 3-Assume X1 is measurable, design a reduced order observer with desired closed loop poles at -16.15±j16.5 We were unable to transcribe this image1 Y(s) U(s) (s+1)(s2+0.7s+2) Consider the following transfer function of a linear control...

  • 3. Consider the system It is desired to design an output feedback controller such that all closed-loop eigenvalues sati...

    3. Consider the system It is desired to design an output feedback controller such that all closed-loop eigenvalues satisfy R, [A S-3 and the output y is to track a constant reference r. (a) Design the controller using the feedback compensator method. (b) Design the controller using the integral-control method. 3. Consider the system It is desired to design an output feedback controller such that all closed-loop eigenvalues satisfy R, [A S-3 and the output y is to track a...

  • Consider the following transfer function of a linear control system Determine the state feedba...

    Consider the following transfer function of a linear control system Determine the state feedback gain matrix that places the closed system at s=-32, -3.234 ± j3.3. Design a full order observer which produces a set of desired closed loop poles at s=-16, -16.15±j16.5 Assume X1 is measurable, design a reduced order observer with desired closed loop poles at -16.15±j16.5 We were unable to transcribe this image1 Y(s) U(s) (s+1)(s2+0.7s+2) Consider the following transfer function of a linear control system (a)...

  • a. Design a state feedback controller with integral control to yield a 10% overshoot and a...

    a. Design a state feedback controller with integral control to yield a 10% overshoot and a settling time of 0.5 sec. (tip: place the third pole to have the same real part as the two dominant, complex poles.) b. Assume that the system is initially relaxed at t=0. With the controller design in (c), what is the steady-state response y(t) excited by the unit step reference signal r(t)=1, for .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT