Question

D9.2 Design a state-feedback controller for the following systems. Determine the controller gains, open-loop transfer functions, and closed-loop transfer functions Use the open-loop transfer functions to obtain root locus, Bode plots, and gain and phase margins LU u=-kx + r Closed-loop poles at s --1tj 2

0 0
Add a comment Improve this question Transcribed image text
Answer #1

sal Givn ata lo O A8lb) en leopr inchong 60 α (s 644) ) s (s-2) Cs Cu 3 - (A-BIe 2 e St 2/213 6 2 3125 1-29pc o.รา@pc 3/3= -3-si 2-90 4/44G G6:25 pm Bode Diagram 50 40 30 20 g 10 10 -90 -135 Ф-180 225 270 2 10 Frequency (rad/s) 10 10 10 104GG7:00 pm Root Locus 1.5 0.5 0.5 1.5 2 Real Axis (seconds )

Add a comment
Know the answer?
Add Answer to:
D9.2 Design a state-feedback controller for the following systems. Determine the controller gains, open-loop transfer functions,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem (2) The open loop transfer function of a feedback system is given by к H...

    Problem (2) The open loop transfer function of a feedback system is given by к H (s) = 10 G(s) = ------ - s (s +1) (0.2 s+ 1) Design a controller such that the closed loop system will have a settling time less than 1.0 sec. and a percentage overshoot (PO) less than 5%. Draw the root locus plots of the uncompensated and compensated systems using Matlab.

  • A unity gain negative feedback system has an open-loop transfer function given by 4. s) =...

    A unity gain negative feedback system has an open-loop transfer function given by 4. s) = s(1 + 10s)(1 + 10s)? Draw a Bode diagram for this system and determine the loop gain K required for a phase margin of 20 deg. What is the gain margin? 5. We are given the closed-loop transfer function 10(s + 1) T(s) = 82+98+10 for a "unity feedback" system and asked to find the open-loop transfer function, generate a log-magnitude-phase plot for both...

  • Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block...

    Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block diagram. G(s) is the open-loop transfer function, and the controller is a gain, K. 1. (20) Calculate the open-loop transfer function tar →Q--t G(s) (10) Calculate the steady-state error to a step input of the open-loop system. 7. (in Bode Form) from the Bode plot. (10) Calculate the shortest possible settling time with a percentage overshoot of 5% or less. 8. 2. (10)Plot the...

  • 7. For a negative feedback control system with unit feedback gain, its open-loop 100 transfer function...

    7. For a negative feedback control system with unit feedback gain, its open-loop 100 transfer function is G (s) Design a PID controller, so that the open s(10s) corresponding closed-loop poles are -2+jl and -5. (10 scores) 7. For a negative feedback control system with unit feedback gain, its open-loop 100 transfer function is G (s) Design a PID controller, so that the open s(10s) corresponding closed-loop poles are -2+jl and -5. (10 scores)

  • Problem 2 design of state feedback controller using pole placement for multi-input systems. Consi...

    Problem 2 design of state feedback controller using pole placement for multi-input systems. Consider the system-Ar-Bu with 1. design a state feedback control u-Kr, or the gain K, to place the closed loop poles at -2,-3,-4 2. Exploiting the structure of A and B, find a different feedback gain that place the poles in the same location. This steps shows that there are several ways to design K; by inspection for instance. 3. Use the Matlab command 'place' to generate...

  • For the following closed-loop transfer functions, sketch the bode plots (magnitude and phase), id...

    For the following closed-loop transfer functions, sketch the bode plots (magnitude and phase), iden- tifying the zero gain, the slopes (in Decibels) and the high-frequency cutt-off rate. Then verify with Matlab (6) wn = 1, 〈 0.0.1, and 0.707. (8) Assuming the system of Problem 6 above, and an input of r(t) = 30sin(1000 t), use your bode plot to obtain the steady-state response For the following closed-loop transfer functions, sketch the bode plots (magnitude and phase), iden- tifying the...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

  • PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

    PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

  • Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness 200N/m Zero Damp...

    Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness 200N/m Zero Damper Input: force Output: mass displacement, y Design a PD controller, Kp+ Kd*s, for vibration reduction by root-locus method so that the damping ratio of the closed-loop systems is 0.5 and natural frequency is 3 rad/s Transfer Function of closed-loop system Draw root locus plot Design gains ww Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness...

  • Assignment 3: Frequency Domain Controller Design using Bode-plots 2 Augment the open loop plant G(s) =...

    Assignment 3: Frequency Domain Controller Design using Bode-plots 2 Augment the open loop plant G(s) = RS), with sim- ple feedback an a dynamic compensator to meet the following specifications: (a) a cross over frequency of we 3 [rad/sec] (b) a phase margin better than 45. (c) a steady state error when tracking a step input < 5%. in H(s) G(sRecall that Bode plots are applied to the loop gain. out

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT