Question

Part 1 Two converging lenses, A and B, have a focal length of 15 cm and 30 cm respectively. If an object is placed 25 cm in front

of lens A then how far should lens B be placed from lens A in order to produce a magnified real image? My di1 was 37.5 cm and d01 was set at 25 cm.
2. How would you position the two lenses from problem 1 in order for them to function as a microscope so as to produce a magn

0 0
Add a comment Improve this question Transcribed image text
Answer #1

37.S Leal anol d stond be > Boven 67で aater than 67s CasThanks give positive rating

Add a comment
Know the answer?
Add Answer to:
Part 1 Two converging lenses, A and B, have a focal length of 15 cm and 30 cm respectively. If an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0...

    Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0 cm are placed 20 cm apart. An object is placed 60 cm in front of converging lens. Determine (a) the position and (b) the magnification of the final image formed (c) sketch a ray diagram for this system.

  • Two converging lenses, each having a focal length equal to 11.0 cm, are separated by 36...

    Two converging lenses, each having a focal length equal to 11.0 cm, are separated by 36 cm. An object is 22 cm to the left of the first lens. a) Findthe position of the final image using both a ray diagram and the thin-lens equation. cm to the right of the object (b) Is the final image real or virtual? O real O virtual Is the final image upright or inverted? O upright O inverted (c) What is the overall...

  • Two converging lenses, with focal lengths of f1 = 10.0 cm and f2 = 15.0 cm,...

    Two converging lenses, with focal lengths of f1 = 10.0 cm and f2 = 15.0 cm, respectively, are placed 40.0 cm apart. An object is placed 60.0 cm in front of the first lens. (a) Calculate the position, with respect to the second lens, of the final image formed by the combination of the two lenses. (b) Calculate the overall magnification of the final image formed by the combination of the two lenses.

  • Two converging lenses are placed 20 cm apart. An object is placed on the left of...

    Two converging lenses are placed 20 cm apart. An object is placed on the left of the first lens, at a distance of 30 cm. The first lens has a focal point of 10 cm and the second lens has a focal length of 20 cm. a) Using a ray diagram determine the type of image formed by the first lens. b) Calculate the position of the image formed by the first lens. c) Find the magnification of the image...

  • Two lenses are placed 13 cm apart. The first lens is a converging lens with focal...

    Two lenses are placed 13 cm apart. The first lens is a converging lens with focal length 4cm. The second lens is a diverging lens with focal length 9cm. If an object is placed at a distance of 13 cm from the first lens, A) What is the position of the image? B) What is the image type (virtual or real)? C) What is the magnification?

  • Two lenses, one converging with a focal length of 17.2 cm and one diverging with focal...

    Two lenses, one converging with a focal length of 17.2 cm and one diverging with focal length 11.8 cm are placed 31 cm apart. a book 15.2 cm tall is placed 52.1 cm in front of the converging lens. Determine a)the position, b) the magnification c) the size d)orientation e)real or virtual f) the power of each lens.

  • Two concave lenses, each with ƒ = −15 cm, are separated by 7.5 cm. An object...

    Two concave lenses, each with ƒ = −15 cm, are separated by 7.5 cm. An object is placed 25 cm in front of one of the lenses. Find (a) the location and (b) the magnification of the final image produced by this lens combination. How would I solve this using ray tracing?

  • The compound microscope consists of two converging lenses: the objective and the eyepiece. Suppose the focal...

    The compound microscope consists of two converging lenses: the objective and the eyepiece. Suppose the focal length f_1 of the objective is 20 cm, and the focal length f2 of the eyepiece is 20 cm. The separation between the objective and eyepiece is 66 cm. The object is located 30 cm in front of the objective. (These numbers are not realistic for a real microscope.) a. Calculate the location and magnification of the image, and state whether it is a...

  • A converging lens L_1 has a focal length of 10 cm. A 5cm tall object is...

    A converging lens L_1 has a focal length of 10 cm. A 5cm tall object is located 15cm to the left of L_1. Construct a ray diagram indicating the position and vertical orientation of the image produced by lens L_1. Calculate this position and see that it matches your diagram. A diverging lens L_2 with a focal length of -20 cm is placed 40cm on the right of lens L_1. The image in (a) above now serves as the object...

  • Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are...

    Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are placed d = 50.0 cm apart, as shown in the figure below. The final image is to be located between the lenses, at the position x = 33.3 cm Indicated. 12 Object Final image (5) How far (in cm) to the left of the first lens should the object be positioned? cm (b) What is the overall magnification of the system? (c) is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT