Question

4. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat exchanger, as shown
0 1
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

on Condense Heat Bichange e xpansi on gbo 3 、 1-060R 5 5℃o bal g 1398-41 Sat.voyous tonha 39 086-51 chon

Add a comment
Know the answer?
Add Answer to:
4. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- f...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 2. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat...

    2. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat exchanger, as shown below. Ammonia leaves the evaporator as saturated vapor at 1.0 bar and is heated at constant pressure to 5 "C before entering the compressor. Following isentropic compression to 18 bar, the refrigerant passes through the condenser, exiting at 40 C, 18 bar. The liquid then passes through the heat exchanger, entering the expansion valve at 18 bar. If the mass flow...

  • Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as...

    Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as shown. Refrigerant 134a leaves the evaporator as saturated vapor at 0.10 MPa and is heated at constant pressure to 20°C before entering the compressor. Following isentropic compression to 1.4 MPa, the refrigerant passes through the condenser and exits at 45°C and 1.4 MPa. The liquid then passes through the heat exchanger and enters the expansion valve at 1.4 MPa. The mass flow rate of...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There are irreversibilities in the compressor. The refrigerant enters the condenser at 16 bar and 160 °C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. Calculate the coefficient of performance, b, and the isentropic compressor efficiency, defined as: 2s Condenser Expansion...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant enters the condenser at 16 bar and 160°C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 150 kW, determine: (a) the mass flow rate of the refrigerant, in kg/s. (b) the power input to the...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant enters the condenser at 16 bar and 190°C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 50 kW, determine: (a) the mass flow rate of the refrigerant, in kg/s. (b) the power input to the...

  • EXAMPLE 6 A household refrigeration system works with a vapor compression refrigeration system with two evaporators...

    EXAMPLE 6 A household refrigeration system works with a vapor compression refrigeration system with two evaporators using Refrigerant 134a as the working fluid. This arrangement is used to achieve refrigeration at two different temperatures with a single compressor and a single condenser. The low temperature evaporator operates at -18°C with saturated vapor at its exit and has a refrigerating capacity of 10.5 kW (3 tons). The higher- temperature evaporator produces saturated vapor at 3.2 bar at its exit and has...

  • Problem-3 (200) In a vapor-compression refrigeration cycle, R134a exits the evaporator as saturated vapor at -32°C....

    Problem-3 (200) In a vapor-compression refrigeration cycle, R134a exits the evaporator as saturated vapor at -32°C. The refrigerant enters the condenser at 14 bar and 170°C, and saturated liquid exits at 14 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the mass flow rate is 2.987 kg/s, determine (a) Refrigeration capacity in KW (100) (b) The power input to the compressor,...

  • In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at...

    In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at -22°C (State 1 ) .. -   Ammonia enters the condenser at 16 Bar and 160°C (State 2; h2 = 1798.45 kJ/kg) -   Ammonia exits the condenser as saturated l1quid at 16 Bar (State 3; h3 = 376.46 kJ/kg) -   The refrigeration capacity is 150 kW. Draw the system schematic and the T-s diagram and determine: i)   the mass flow rate· of refrigerant, ii)   the...

  • Please also draw the T-S diagrams and PH diagrams to facilitate understanding. Thank you. 5. The refrigeration system s...

    Please also draw the T-S diagrams and PH diagrams to facilitate understanding. Thank you. 5. The refrigeration system shown below is another variation of the basic vapor compression refrigeration system which attempts to reduce the compression work. In this system, a heat exchanger is used to superheat the vapor entering the compressor while sub-cooling the liquid exiting from the condenser Consider a system of this type that uses refrigerant-134a as its refrigerant and operates the evaporator at -10°C, and the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT