Question

A steam power plant operates on ideal regenerative Rankine cycle with 2 feedwater heaters, a shown in Fig. 4. Steam enters th
1 0
Add a comment Improve this question Transcribed image text
Answer #1

Lodbai 50 Go bas C-4) do bar (z) (b 2. An. 83649.43 Go bur ealbl ao benonliailid to Cloca

Add a comment
Know the answer?
Add Answer to:
A steam power plant operates on ideal regenerative Rankine cycle with 2 feedwater heaters, a shown in Fig. 4. Steam enters the turbine at 100 bar and 630 °C and exhaus at 1.1 bar. Steam is extrac...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed...

    Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 3508C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat...

  • 10-48 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-48 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work pro- duced by the turbine, the work consumed by the pump, and...

  • 2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving...

    2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering the turbine at 10 mPa,600C. X fraction of steam is extracted from the turbine at 0.6 mPa pressure for the high pressure open feedwater heater. Then x fraction more of steam is extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater . The condenser pressure in the cycle is 5 kPa. The mass flow rate...

  • 10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throt- tled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and...

  • 1. A Steam Power Plant that operates on an ideal regenerative Rankine Cycle with an open...

    1. A Steam Power Plant that operates on an ideal regenerative Rankine Cycle with an open feedwater heater is considered. The turbine inlet conditions are 6 MPa, 450 C. The regeneration pressure is 0.4 MPa. The condenser pressure is 20 kPa. a) Draw the T-s diagram, and the sketch of the steam power plant. b) Calculate the low pressure pump work. c) Calculate the high pressure pump work. d) Calculate the fraction of the steam extracted from the turbine for...

  • A steam power plant operates on an ideal Rankine cycle with two of its feedwater heater...

    A steam power plant operates on an ideal Rankine cycle with two of its feedwater heater closed as shown in the figure below and with a net power output of 105MW. The mass flow rate of the steam is 70kg/s and enters the high-pressure turbine at 6MPa and and leaves at 1.5 Mpa. a fraction of x of steam is extracted at this pressure to the closed feedwater. a fraction of y of steam is extracted from the second stage...

  • Consider a modern extra-supercritical pressure steam power plant that operates Rankine cycle with one open feedwater...

    Consider a modern extra-supercritical pressure steam power plant that operates Rankine cycle with one open feedwater heater, one closed feedwater heater, and one reheater, as shown below. Steam enters the high-pressure turbine at 32 MPa and 700 °C and is condensed in the condenser at a pressure of 10 kPa. Steam exits the high-pressure turbine at 4 MPa and is routed into a reheater (inside the boiler) to be reheated to 640 °C. Steam at P-8 MPa is extracted from...

  • Consider an ideal regenerative Rankine water vapor cycle with two feed water heaters, one closed (streams...

    Consider an ideal regenerative Rankine water vapor cycle with two feed water heaters, one closed (streams do not physically mix). The steam enters the turbine at 10MPa and 600º C, at a rate of 310kh / s, and exits towards the condenser at 10kPa. Steam is drawn from the turbine at 1.2 MPa (stream 9) for the closed heater and at 0.6 MPa (stream 10) for the open heater. The extracted steam leaves the closed heater (stream 6) as a...

  • thermodynamic 2. A ste am power plant operates on an ideal regenerative Rankine cycle. Steam enters...

    thermodynamic 2. A ste am power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is condensed in the condenser at 10 kPa. Steam is extracted from the turbine at 0.5 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwa ter heater as a saturated liquid. The plant has a net power output of 150 MW. Show the cycle on a T-s dingram, and determine (a)...

  • a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure...

    a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure turbine (HPT) at a pressure of 10 MPa and temperature of 550°C. The steam expands through the HPT stage to a pressure of 0.6 MPa. Some of the steam at the end of the expansion process in HPT is extracted for a regeneration process in a closed-type feedwater heater. The steam leaves the heater as a saturated liquid and then is throttled to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT