Question

For these graphs, they are wave functions of identical particles that are within an infinite square well and their width is a.

Vi Aax V2 0 elsewhere elsewhere a x

a.)What is the most probable value of the energy for each wave function and which state has the largest probable energy?

b.) Which of these states has the largest expectation value of the energy? (this part can be done without calculating the expectation value of the energy)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

^t d. am e et ma 7m a. ma

Add a comment
Know the answer?
Add Answer to:
For these graphs, they are wave functions of identical particles that are within an infinite square well and their width is a. a.)What is the most probable value of the energy for each wave function...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An infinite square well and a finite square well in 1D with equal width. The potential...

    An infinite square well and a finite square well in 1D with equal width. The potential energies of these wells are Infinite square well: V(x)=0, from 0 < x < a, also V(x) = , elsewhere Finite square well: V(x)= 0, from 0 < x < a, also V(x) = , elsewhere The ground state of both systems have identical particles. Without solving the energies of ground states, determine which particle has the higher energy and explain why?

  • There is a 1-d infinite square well of width a, between x = 0 and a....

    There is a 1-d infinite square well of width a, between x = 0 and a. We also know that V(x) = 0 for 0<x<a and +∞ elsewhere. Then we add a perturbation to it so that V(x) = ?_0 for 0 < x < a/2, and the same as before elsewhere. That is, a flat bump of width a/2 and height ?_0 in the left half of the well. Please answer following 3 questions. 1) Sketch the potential and...

  • Please answer a,b and c. Now, consider a 1-d infinite square well of width a, between...

    Please answer a,b and c. Now, consider a 1-d infinite square well of width a, between x = 0 and a, such that V(x) = 0 for 0<x<a and too elsewhere. A perturbation is then added to it so that V(x) = V. for 0 <x <a/2, and the same as before elsewhere. In other words, a flat bump of width a/2 and height V. in the left half of the well. (a) (5 pts) Carefully sketch the potential and...

  • 2. A particle of mass m in the infinite square well of width a at time...

    2. A particle of mass m in the infinite square well of width a at time 1 - 0 has wave function that is an equal weight mixture of the two lowest n= 1,2 energy stationary states: (x,0) - C[4,(x)+42(x)] (a) Normalize the wave function. Hints: 1. Exploit the orthonormality of W, 2. Recall that if a wave function is normalized at t = 0, it stays normalized. (b) Find '(x, t) and (x,1)1at a later time 1>0. Express Y*...

  • 1. A particle in an infinite square well has an initial wave function Alsin sin 4 0 < x < L other...

    help on all a), b), and c) please!! 1. A particle in an infinite square well has an initial wave function Alsin sin 4 0 < x < L otherwise s(x, t = 0) 0 (a) Find A so that the wavefunction is normalized. (b) Find '(z,t). (c) Find the expectation value(E) of the energy of ψ(x,t = 0). You may use the result mx n 2 0 1. A particle in an infinite square well has an initial wave...

  • A particle in the infinite square well has as its initial wave function an even mixture...

    A particle in the infinite square well has as its initial wave function an even mixture of the first two stationary states: psi(x, 0) = A[psi_1 (x) + psi_2(x)]. Normalize psi(x, 0) (that is, find A). Find psi (x) and |psi (x, )|^2. Express the latter as a sinusoidal function of time. To simplify the result, let omega = pi^2 h/2ma^2. Compute < x >? Compute < p >? If you measured the energy of this particle, what values might...

  • 2. A particle of mass m in the infinite square well of width a (located at...

    2. A particle of mass m in the infinite square well of width a (located at 0 SSa) has as its initial wave function a mixture of two stationary states: v(x,0)Avi(x) +2s (x). (a) Find the probability density of finding the particle at the center of the well, as a function of time. (b) Find the average momentum of the particle at time t.

  • please explain all, thanks! 4. (60 pts) A particle in an infinite square well of width...

    please explain all, thanks! 4. (60 pts) A particle in an infinite square well of width L has an initial wave function (x,t = 0) = Ax(L - x)2, OSX SL a) Find y(x, t) fort > 0. You first have to normalize the wave function. Hint: this is best expressed an infinite series: show that the wave function coefficients are on = * 31% (12 – n?)(1-(-1)") → (n = 87315 (12 - nºre?); n odd. b) Which energy...

  • 6. (Extra Credit: 6 Points) Consider two noninteracting particles of mass m in an infinite square well of width L. For the case with one particle in the single-particle state In) and the other in...

    6. (Extra Credit: 6 Points) Consider two noninteracting particles of mass m in an infinite square well of width L. For the case with one particle in the single-particle state In) and the other in the state k) (nメk), calculate the expectation value of the squared inter-particle spacing (71-72) , assuming (a) the particles are distinguishable, (b) the particles are identical in a symmetrical spatial state, and (c) the particles are identical in an anti-symmetric spatial state. Use Dirac notation...

  • A particle in an infinite square well has the initial wave function: (x,0)- A sin(x/a) (0...

    A particle in an infinite square well has the initial wave function: (x,0)- A sin(x/a) (0 S a (a) (b) Determine A Find$(z,t) (Hint: You will need to break up this wavefunction into a superposition of pure states. Use orthogonality to find the coefficients.) (c) Calculate (x). Is it a function of time? (d) Calculate (H).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT