Question

A rectangular cross section at a location along a beam in bending is


(a). A rectangular cross section at a location along a beam in bending is acted upon by a bending moment and a shear force. The cross section is \(120 \mathrm{~mm}\) wide, \(300 \mathrm{~mm}\) deep and is orientated such that it is in bending about its major axis of bending. The magnitudes of the bending moment and shear force are \(315 \mathrm{kNm}\) and \(240 \mathrm{kN}\) respectively. Determine the maximum bending and shear stresses on the cross section. Plot the bending and shear stress distributions through the depth of the section at this cross section.


(b). Show that the midspan deflection for a simply supported beam, span \(L\), loaded by a uniformly distributed load ' \(w\) ' (load units/unit length), along its full length, is given by:

$$ \delta=\frac{5 w L^{4}}{384 E I} $$

where \(E\) is the Young's modulus of the beam material, and \(I\) is the second moment of area about the axis of bending.


(c). A simply supported steel beam spanning \(5.5 \mathrm{~m}\) supports a uniformly distributed load of \(16.3 \mathrm{kN} / \mathrm{m}\). The beam cross section is shown in Figure 3 . The Young's modulus of steel is \(210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}\). Calculate the mid-span deflection.

image.png

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A rectangular cross section at a location along a beam in bending is
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simply supported wood beam of rectangular cross section and span length 2 m carries a...

    A simply supported wood beam of rectangular cross section and span length 2 m carries a uniformly distributed load of intensity 9 = 1 kN/m as shown. Calculate the maximum bending stress and the maximum shear stress in the beam. 

  • 1.2 (20 Marks) A beam of rectangular cross section (width b and height h) supports a...

    1.2 (20 Marks) A beam of rectangular cross section (width b and height h) supports a uniformly distributed load along its entire length L. The allowable stresses in bending and shear are all and Tallow, respectively. a) If the beam is simply supported, what is the span length Lo below which the shear stress governs the allowable load and above which the bending stress governs? b) If the beam is supported as a cantilever, what is the length Lo below...

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P= 10 KN W = 10 kN/m 200 mm 5 m 5 m...

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P = 10 kN W = 10 kN/m 200 mm 5 m 5...

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P = 10 kN w = 10 kN/m 200 mm 5 m 5...

  • 5. Determine the mid-span short-term deflection of a simply supported beam with the section shown in...

    5. Determine the mid-span short-term deflection of a simply supported beam with the section shown in Figure Q5. Design data: Concrete strength: fcu 30 MPa. Area of tensile steel reinforcement: As 1500 mm Area of compressive steel reinforcement: A,-1500 mm2 Instantaneous static modulus of elasticity of concrete = 25GPa. Span -8.0 m Loading: Dead load 5.0 kN/m (uniformly distributed load); Live load 5.0 kN/m (uniformly distributed load) (Hint: the height of neutral axis of the mid-span section under the service...

  • The simply supported beam, with a U cross section, is subjected to a uniformly distributed force...

    The simply supported beam, with a U cross section, is subjected to a uniformly distributed force of 8 kN/m and a concentrated load of 12 kN as shown. (a) Determine the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of the neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum...

  • The simply supported beam of length L is subjected to uniformly distributed load of w and...

    The simply supported beam of length L is subjected to uniformly distributed load of w and a vertical point load P at its middle, as shown in Figure Q3. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters w, P,L,1, E. Self-weight of the beam is neglected. P W L/2 L/2 Figure Q3 (a) Determine the reactions, bending moment equation along the beam and...

  • Problem 1 A simply supported beam of length L = 5m is subjected to a point...

    Problem 1 A simply supported beam of length L = 5m is subjected to a point load P= 20 kN at the mid span. Draw the shear force and bending moment diagram for the beam. If the beam is 300mm x 500mm, calculate the deflection at the midspan for the following orientations where the dashed line shows the bending axis. Explain the difference in results. Which orientation is better for beam performance and why? Take E = 30,000 MPa 300...

  • A beam may have zero shear stress at a section but may not have zero deflection;...

    A beam may have zero shear stress at a section but may not have zero deflection; Hence, bending is primarily caused by bending moment In Torsion loading a stress element in a circular rod is subject to shear state The principal plane and the plane on which the shear stresses are maximum, they make 90 degree angle between them. If the Torque on a steel circular shaft (G=80 GPa) is 13.3 kN-m and the allowable shear stress is 98 MPa,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT