Question

A shock wave propagates through wet steam at 300K with a quality of 85%. A) What is the speed of sound in the wet steam (m/s)

B) Assuming not Ideal Gas, and thus using conservation equations, What is the shock wave Mach # required for the post shock wuality to be 100%?

C) What is the post shcok Mach #?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Spes of oud in the tset stean 2 OLo, we know -that- ttre FG./ ste.amu 133 t steam)Shock , the post-shock → ラ, V-1 V-1 Ptatic P:tata e Ptotal → i e can, estimata sて @) Post skok mAUA. indnced cep st九ean S oun

Add a comment
Know the answer?
Add Answer to:
B) Assuming not Ideal Gas, and thus using conservation equations, What is the shock wave Mach # required for the post shock wuality to be 100%? C) What is the post shcok Mach #? A shock wave propagat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. So equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) = 8.81...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k-14 and R-0.287 LJ/kg-K respectively, --Given Values Inlet Temperature: TI (K) - 339 Inlet pressure: P1 (kPa)=618 Inlet Velocity: VI (m/s) = 68 Area at nozzle inlet: Al (em'2)7.77 Throat area: A...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, nir as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, nir as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables Note: The specific heat ratio and gas constant for air are given as k-14 and R-0.287 kJ/kg-K respectively, Give Values Inlet Temperature: TI(K) - 339 Inlet pressure: P1 (kPa)-618 Inlet Velocity: V1 (m/s) - 68 Area at nozzle inlet: Al (cm'2) - 7.77 Throat area:...

  • just need answers no explanation required. Question 23 1 pts At what Kelvin temperature does the...

    just need answers no explanation required. Question 23 1 pts At what Kelvin temperature does the rms speed of the oxygen (O2) molecules in the air near the surface of the earth become equal to the escape speed from the earth? (R-8.31 /mol K;molar mass of O, gas is 32 g/mol; radius of the earth Re - 6.37 x 10ºm; the escape speed from the earth is 11.2 km/s) 1.6 x 10K 8.0 x 10K 1.1 x 10K 3.6 x...

  • Question 3 - 70 Marks In this question we are considering a scramjet engine. A scramjet...

    Question 3 - 70 Marks In this question we are considering a scramjet engine. A scramjet engine is a high-speed propulsion engine which begins working at approximately Mach 5. Similar to a regular jet engine, the air is compressed in the inlet, fuel is added and combustion occurs in the combustion chamber and the higher pressure and temperature mixture is then exhausted through a nozzle to provide thrust. Unlike a conventional jet engine the air is compressed using the shock...

  • I need Summary of this Paper i dont need long summary i need What methodology they used , what is the purpose of this p...

    I need Summary of this Paper i dont need long summary i need What methodology they used , what is the purpose of this paper and some conclusions and contributes of this paper. I need this for my Finishing Project so i need this ASAP please ( IN 1-2-3 HOURS PLEASE !!!) Budgetary Policy and Economic Growth Errol D'Souza The share of capital expenditures in government expenditures has been slipping and the tax reforms have not yet improved the income...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT