Question

Question 23 1 pts At what Kelvin temperature does the rms speed of the oxygen (O2) molecules in the air near the surface of t
Question 22 1 pts A vibrating tuning fork of frequency 640 Hz is held above a tube filled with water. Assume the speed of sou
Question 21 1 pts The solution to the differential equation of a damped oscillator, for the case in which the damping is smal
One mole of hydrogen gas (molar mass = 2.0 g/mol) has an rms velocity of 2.0 x 10 m/s. To what temperature on the Celsius sca
Question 19 1 pts When driving over a washboard speed bumps, certain speeds make the bumps less bumpy. Suppose your car hasjust need answers no explanation required.
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
just need answers no explanation required. Question 23 1 pts At what Kelvin temperature does the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • For lightly damped harmonic oscillators the displacement is given by x(t) = (A^(-bt/2m))*cos(ωt + φ) with period T = 2π...

    For lightly damped harmonic oscillators the displacement is given by x(t) = (A^(-bt/2m))*cos(ωt + φ) with period T = 2π / (sqrt((k/m)-(b^2/(4m^2)))). A) Show that this equation of motion obeys the force equation for a damped oscillator: F = −kx − bv. B) Shock absorbers in a pickup truck are designed to have a significant amount of damping. The effective spring constant of the four shock absorbers in a 1600 kg truck have an effective spring constant of 157,000 N/m....

  • A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped...

    A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped when moving in the vertical direction by a damping force Famp =-rý, where y is the 1200 kg sitting 4. (a) damping constant. If y is 90% of the critical value; what is the period of vertical oscillation of the car? () by what factor does the oscillation amplitude decrease within one period?...

  • PROBLEMS 89 3-30. A system composed of a mass of S kg and an elastic member having a modulus of 4...

    Please answer 3-34 and 3-35. Please provide all steps so I can follow along. PROBLEMS 89 3-30. A system composed of a mass of S kg and an elastic member having a modulus of 45 N/m is less than critically damped. When the mass is givén an initial displacement and released from rest, the overshoot (the displacement attained past the equilibrium position) is 25% Determine the dam ping factor and the damping constant. 3-31. A mass-spring system is critically damped....

  • Suppose that a car weighing 4000 pounds is supported by four shock absorbers Each shock absorber has a spring constant of 6500 lbs/foot, so the effective spring constant for the system of 4 shock ab...

    1. Suppose that a car weighing 4000 pounds is supported by four shock absorbers Each shock absorber has a spring constant of 6500 lbs/foot, so the effective spring constant for the system of 4 shock absorbers is 26000 lbs/foot.1. Assume no damping and determine the period of oscillation of the vertical motion of the car. Hint: g= 32 ft/sec22. After 10 seconds the car body is 1 foot above its equilibrium position and at the high point in its cycle....

  • 1-/7 points 1. Suppose that a car weighing 2000 pounds is supported by four shock absorbers...

    1-/7 points 1. Suppose that a car weighing 2000 pounds is supported by four shock absorbers Each shock absorber has a spring constant of 6250 lbs/foot, so the effective spring constant for the system of 4 shock absorbers is 25000 lbs/foot. 1. Assume no damping and determine the period of oscillation of the vertical motion of the car. Hint: g- 32 ft/sec2 25000.32 2. After 10 seconds the car body is 1 foot above its equilibrium position and at the...

  • Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described...

    Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described by the following ordinary differential equation: d’x dx ++ kx = 0 m dr dt where x = displacement from equilibrium position (m), t = time (s), m 20-kg mass, and c = the damping coefficient (N · s/m). The damping coefficient c takes on three values of 5 (under- damped), 40 (critically damped), and 200 (overdamped). The spring constant k = 20 N/m....

  • 8. + 0.5/1 points Previous Answers OSUniPhys1 15.5.WA.046. My Note A vertical spring-mass system undergoes damped oscil...

    8. + 0.5/1 points Previous Answers OSUniPhys1 15.5.WA.046. My Note A vertical spring-mass system undergoes damped oscillations due to air resistance. The spring constant is 2.50 x 10 N/m and the mass at the end of the spring is 15.0 kg. (a) If the damping coefficient is b = 4.50 N. s/m, what is the frequency of the oscillator? 6.498 ✓ Hz (b) Determine the fractional decrease in the amplitude of the oscillation after 7 cycles. 316 x What is...

  • PART A PART B PART C PART D (1 point) A mass m = 4 kg...

    PART A PART B PART C PART D (1 point) A mass m = 4 kg is attached to both a spring with spring constant k = 197 N/m and a dash-pot with damping constant c=4N s/m. The mass is started in motion with initial position to 3 m and initial velocity vo = 6 m/s. Determine the position function r(t) in meters. x(1) Note that, in this problem, the motion of the spring is underdamped, therefore the solution can...

  • Using Octave to solve (preferably with solving the differential equations and go through the process) 1. A harmonic osc...

    Using Octave to solve (preferably with solving the differential equations and go through the process) 1. A harmonic oscillator obeys the equation dx dt dt which can be written as a set of coupled first order differential equations dx dt dt One procedure in Octave for coding these equations involves a global statement and the line solutionRC Isode(@dampedOscillator, [1, 0], timesR); Employ the help system to determine the properties of the Isode() function (or an equivalent solver such as ode23()...

  • 1) Answer the following questions for harmonic oscillator with the given parameters and initial c...

    1) Answer the following questions for harmonic oscillator with the given parameters and initial conditions Find the specific solution without converting to a linear system Convert to a linear system Find the eigenvalues and eigenvectors of the corresponding linear system Classify the oscillator (underdamped, overdamped, critically damped, undamped) (use technology to) Sketch the direction field and phase portrait Sketch the x(t)- and v(t)-graphs of the solution a. b. c. d. e. f. A) mass m-2, spring constant k 1, damping...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT