Question

1. (30 points) A 2-kg block A is pushed up against a spring compressing it a distance r-0.1 m (i.e., the spring is unattached
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that massaf the block(m)ニ2k inclination ofthe plateform(e) (2d) Caufficieut af restitution betueen blodk onel pendulumpage 1

Yom canseroa ton of momen fum bekween A andB initial mementum - final memen tum multiplying equation ⓘ by D and addina in equpage 2

salu on td) when rope sudiny broke 40 conseroalion of mechanical er 3 m E35-7SS3J Ihis KE uaiel to deflict the spning of ke lpage 3

Add a comment
Know the answer?
Add Answer to:
1. (30 points) A 2-kg block A is pushed up against a spring compressing it a distance r-0.1 m (i.e., the spring is unattached to the block). The block is then released from rest and slides down t...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a 2 kg block A is pushed up against a spring compressing it a distance x=0.107...

    a 2 kg block A is pushed up against a spring compressing it a distance x=0.107 m. The block is then released from rest and slides down the 20° incline until it strikes a 1-kg sphere B that is suspended from a 1 m inextensible rope. The spring constant k=800 N/m, the coefficienct of friction between A and the ground is 0.2, the distance A slides from the unstretched length of the string is d=1.5, and the coefficient of restitution...

  • Block A (M = 10 kg) is released from rest and slides down an initially frictionless...

    Block A (M = 10 kg) is released from rest and slides down an initially frictionless ramp (θ= 30°, L = 10 m). It then passes over a rough patch of ground (µk= 0.633 and d = 5m) before impacting block B. Block B (m = 20 kg) is initially at rest and suspended by a rigid bar of negligible mass and length R = 5m. The coefficient of restitution during the impact is e = 0.75. Determine the maximum...

  • Block A (M = 10 kg) is released from rest and slides down an initially frictionless...

    Block A (M = 10 kg) is released from rest and slides down an initially frictionless ramp (@= 30%, L = 10 m). It then passes over a rough patch of ground (W=0.633 and d = 5m) before impacting block B. Block B (m = 20 kg) is initially at rest and suspended by a rigid bar of negligible mass and length R = 5m. The coefficient of restitution during the impact is e=0.75. Determine the maximum deflection angle reached...

  • Block A, having a mass m, is released from rest falls a distance h and strikes...

    Block A, having a mass m, is released from rest falls a distance h and strikes the plate B having a mass 2m. If the coefficient of restitution between A and B is e, determine the velocity of the plate just after collision. The spring has a stiffness k.

  • 6. Consider a horizontal spring with spring constant k. A block with mass m is pushed far to the left against the spring until the spring is compressed a distance r relative to its relaxed length. A...

    6. Consider a horizontal spring with spring constant k. A block with mass m is pushed far to the left against the spring until the spring is compressed a distance r relative to its relaxed length. A second block, which is stationary and also has a mass m, is located to the right of the spring im rrm a) We release the first block from rest. Due to the force from the spring, it slides to the right and eventually...

  • In the figure, block 1 of mass 2.00 kg slides from rest along a frictionless ramp...

    In the figure, block 1 of mass 2.00 kg slides from rest along a frictionless ramp from height h = 2.60 m and then collides with stationary block 2, which has mass 4.50 kg. The spring shown has a spring constant of 31.5 N/m. (a) How fast is block 1 moving just before contacting block 2? (b) Assume the whole path is frictionless, and the collision is completely inelastic, how far does the spring compress? (c) Now, assume you test...

  • 2. Starting from rest, a block of mass m slides down a frictionless incline at angle...

    2. Starting from rest, a block of mass m slides down a frictionless incline at angle θ(0◦ < θ < 90◦) where it runs into a spring of spring constant k. When the block momentarily stops, it has compressed the spring by distance x. Find expressions for (a) the distance the block slides down the incline from when it is released to when it momentarily stops (b) the distance between the point of the first block-spring contact and the point...

  • The 2,5-kg block A is released from rest in the position shown and slides down on...

    The 2,5-kg block A is released from rest in the position shown and slides down on a curved surface. The block then hits the 3-kg pallet B. The block and the pallet move together and come to rest after sliding a distance d across the floor. Suppose that the curved surface is rough and velocity of block A before hitting the pallet B is 5,5 m/s. Determine the impulse exerted by the pallet B on the block A during impact....

  • A 12-kg block is pressed against a spring (spring constant 620 N/mN/m ), compressing it some...

    A 12-kg block is pressed against a spring (spring constant 620 N/mN/m ), compressing it some distance. The block is released from rest and slides across a track as shown in (Figure 1). While most of the track is frictionless, there is a 55-cm section of track that has a coefficient of friction with the block of 0.3. A bit further on, the track ascends into a hill that is 40-cm tall. Part A: What is the minimum compression of...

  • A block of mass m = 3.00 kg starts from the rest and slides down a...

    A block of mass m = 3.00 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.40 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. (A) Determine the speed of the block with mass m = 3.00 kg after the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT