Question

7. Consider the differential equation (a) Show that z 0 is a regular singular point of the above differential equation (b) Le
0 0
Add a comment Improve this question Transcribed image text
Answer #1

nAm (2) ·t.? .toua11껸 lowr8t EggT eo-effpff -tho 2.1 03 Qr 4 3m16) 24 4 3+435+... 3-45

Add a comment
Know the answer?
Add Answer to:
7. Consider the differential equation (a) Show that z 0 is a regular singular point of the above differential equation (b) Let y(x) be a solution of the differential equation, where r R and the s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • solve 4 (4) Show that the given differential equation has a regular singular point at r...

    solve 4 (4) Show that the given differential equation has a regular singular point at r = 0; determine the indicial equation, the recurrence relation, and the roots of the indicial equation; find the series solution (r > 0) corresponding to the larger root: (20 points) y = 0.

  • 1) Show that zo-0 is a regular singular point for the diferenta equation Zo = 0 is a regular sing...

    please show the recurrence formula 1) Show that zo-0 is a regular singular point for the diferenta equation Zo = 0 is a regular singular point for the differential equation 15ェy" + (7 + 15r)y, +-y = 0, x>0. Use the method of Frobenius to obtain two linearly independent series solutions about zo Find the radii of convergence for these series. Form the general solution on (0, 0o). 0. 1) Show that zo-0 is a regular singular point for the...

  • (1 point) In this problem you will solve the differential equation (+7)y"+11xy' - y=0. x" for...

    (1 point) In this problem you will solve the differential equation (+7)y"+11xy' - y=0. x" for the differential equation will converge at least on the interval (-inf.-sqrt(7)] (1) Ey analyzing the singular paints of the differential equation, we know that a series solution of the form y = . (2) Substituting y = . *" into (x2+7y" + 11xy - y = 0, you get that Multiplying the coefficients in x through the sums E Reindex the sums Finally combine...

  • 1 point) Consider the differential equation which has a regular singular point at x = O. The indi...

    1 point) Consider the differential equation which has a regular singular point at x = O. The indicial equation for x 0 is r1/2 r+ 0 =0 and r O with roots (in increasing order) r1/2 Find the indicated terms of the following series solutions of the differential equation: (a) y = x, (94 (b)y-x(5+ The closed form of solution (a) is y = xtO r3+ 1 point) Consider the differential equation which has a regular singular point at x...

  • (1 point) Consider the differential equation 2x(x )y"3 - 1)y -y0 which has a regular singular...

    (1 point) Consider the differential equation 2x(x )y"3 - 1)y -y0 which has a regular singular point atx 0. The indicial equation for x 0 is 2+ 0 r+ with roots (in increasing order) r and r2 Find the indicated terms of the following series solutions of the differential equation: x4. (a) y =x (9+ x+ (b) y x(7+ The closed form of solution (a) is y (1 point) Consider the differential equation 2x(x )y"3 - 1)y -y0 which has...

  • (1 point) In this problem you will solve the differential equation or @() (1) Since P(a) 0 are not analytic at and 2()...

    (1 point) In this problem you will solve the differential equation or @() (1) Since P(a) 0 are not analytic at and 2() is a singular point of the differential equation. Using Frobenius' Theorem, we must check that are both analytic a # 0. Since #P 2 and #2e(z) are analytic a # 0-0 is a regular singular point for the differential equation 28x2y® + 22,23, + 4y 0 From the result ol Frobenius Theorem, we may assume that 2822y"...

  • Given that x =0 is a regular singular point of the given differential equation, show that...

    Given that x =0 is a regular singular point of the given differential equation, show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, ∞) 2xy''-y'+y=0

  • Consider the equation 3x²y" + x(2 – xy + xy = 0 with regular singular point...

    Consider the equation 3x²y" + x(2 – xy + xy = 0 with regular singular point Xo = 0. (a) Find the indicial roots ri, r2, with ri r2. Show your calculations. (b) Which of the following is true for the equation above: Indicate the letter of your choice and explain your choice. % There are two linearly independent convergent series solutions of the form yı (x) = x Š cux" and y(x) = x Š b,x". H0 N=0 (1)...

  • 4. Given that x =0 is a regular singular point of the given differential equation, show...

    4. Given that x =0 is a regular singular point of the given differential equation, show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain to linearly independent series solutions about x = 0. Form the general solution on (0, 0) kxy” – (2x + 3)y' + y = 0

  • Consider the differential equation (1 2 yay 0, where a E R is a constant. (a)...

    Consider the differential equation (1 2 yay 0, where a E R is a constant. (a) By analysing the equation, show that there are two linearly independent power series solutions in powers of for la<1 (b) Find two linearly independent solutions. Note: The recurrence relation you derive should be the following (or equivalent to it) (n-a)(n a) an (n1)(n2) n 2 0. an+2 polynomial solution of (c) Show that if a is (nonnegative) integer n, then there is a degree...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT