Question

20. a. Find the system function given the following difference equation: = x (n b. Find the steady-state response to x(n)-cos

0 0
Add a comment Improve this question Transcribed image text
Answer #1

20) (a) Given diference equatim1s F t Transfrm 1-0.2e Ycedi) 2. X ce edu 1-0.26cos (Won) ใน 1 -0.2e-d 1 -o.2e 1-0.e COS This the steadu S J state respomseJTT 1.2 Mognftude Jw 1r o

Add a comment
Know the answer?
Add Answer to:
20. a. Find the system function given the following difference equation: = x (n b. Find the steady-state response to x(...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For the LTI system with the difference equation y[n] = 0.25x[n] +0.5x[n-1] + 0.25x[n-2] a. Find...

    For the LTI system with the difference equation y[n] = 0.25x[n] +0.5x[n-1] + 0.25x[n-2] a. Find the impulse response h[n] (this is y[n] when x[n] = δ[n] ) b. Find the frequency response function H(?^?ω). Your result should be in the form of A(?^?θ(?) )[cos(αω)+β]. Specify values for A, ?(?), α,and β c. Evaluate H(?^?ω) for ω = π , π/2 , π/4, 0, -π/4, - π/2, -π d. Plot H(?^?ω) in magnitude and phase for –π < ω <...

  • If the input to the system described by the difference equation y(n+1) (1/2)x(n+) -x(n) is a)...

    If the input to the system described by the difference equation y(n+1) (1/2)x(n+) -x(n) is a) Does it matter what are the initial conditions for nc0 in order to find y(n) for n20? Explain your b) x(n) -u(n) answer. (3 points). Determine the transfer function H(z) and the Frequency Response (H(est) (10 points). Find the amplitude lH(epT)I and the phase He*') as a function of co. Evaluate both for normalized frequency ω T=z/4. ( 10 points) c) Find the steady...

  • 0.1311(22 2z1 5. The transfer function of a system is H(z) = z2-0.74780.2722 a) Find the frequency response function of...

    0.1311(22 2z1 5. The transfer function of a system is H(z) = z2-0.74780.2722 a) Find the frequency response function of the system b) Let xn] 1 cos(0.2nt)+cos(0.45n7). Find the steady-state response. Use Matlab c) Plot the magnitude and phase response using Matlab 0.1311(22 2z1 5. The transfer function of a system is H(z) = z2-0.74780.2722 a) Find the frequency response function of the system b) Let xn] 1 cos(0.2nt)+cos(0.45n7). Find the steady-state response. Use Matlab c) Plot the magnitude and...

  • For the causal filter below y(n) x(n) -20 eja 1-0.8e10 Write the difference equation(show the equation...

    For the causal filter below y(n) x(n) -20 eja 1-0.8e10 Write the difference equation(show the equation clearly and define coefficients) Give and plot the frequency response magnitude (show the equation clearly) Compute and plot the impulse response using MATLAB d a. b. c. Use MATLAB to determine steady state response due to x(n)-u(n) Write a MATLAB program to compute and plot the frequency response of the overall system. Give plots in dB and the program e. For the causal filter...

  • For the causal filter below y(n) x(n) -20 eja 1-0.8e10 Write the difference equation(show the equation...

    For the causal filter below y(n) x(n) -20 eja 1-0.8e10 Write the difference equation(show the equation clearly and define coefficients) Give and plot the frequency response magnitude (show the equation clearly) Compute and plot the impulse response using MATLAB d a. b. c. Use MATLAB to determine steady state response due to x(n)-u(n) Write a MATLAB program to compute and plot the frequency response of the overall system. Give plots in dB and the program e. For the causal filter...

  • please answer correctly 4. (20 points) Consider the system y(n)(-1 x(n) +x(n-1) (1) Find the frequency...

    please answer correctly 4. (20 points) Consider the system y(n)(-1 x(n) +x(n-1) (1) Find the frequency response of this system. (2) Find the steady-state response when x(n) = 5 cos(n, π)

  • (5) For the system described by the following difference equation y(n)= 0.9051y(n 1) 0.598y(n 2) -0.29y(n...

    (5) For the system described by the following difference equation y(n)= 0.9051y(n 1) 0.598y(n 2) -0.29y(n 3) 0.1958y(n - 4) +0.207r(n)0.413r(n 2)+0.207a(n - 4) (a) Plot the magnitude and phase responses of the above system. What is the type of this filter? (b) (b) Find and plot the response of the system to the input signal given by /6)sin(w2n +T /4) u(n), where w 0.25m and ws 0.45m a(n) 4cos(win -T = (c) Determine the steady-state output and hence find...

  • 1. Use the MATLAB command freqz to calculate the DTFT of System 1, to find its frequency response...

    1. Use the MATLAB command freqz to calculate the DTFT of System 1, to find its frequency response 0.25r[n] + 0.25r|n -2]. H(). For this exercise, System 1 has a different difference equation yn] Find H1 (w) for- aK π, with frequency steps of Δα-π/100. 2. Plot both the magnitude |H1(2)| and the phase LH1(w) vs w, for-π < ώ < π. Use abs and angle commands to obtain magnitude and phase. Label and title both plots and include in...

  • For the following difference equation, y[n] =x[n + 1]+ x[n] + x[n – 1] a. Find...

    For the following difference equation, y[n] =x[n + 1]+ x[n] + x[n – 1] a. Find the frequency response and phase angle. b. Sketch the impulse response C. Is this system causal or non-causal?

  • B Frequency Response Modeling Frequency response modeling of a linear system is based on the prem...

    Please explain every step as clearly and detailed as possible. B Frequency Response Modeling Frequency response modeling of a linear system is based on the premise that the dynamics of a linear system can be recovered from a knowledge of how the system responds to sinusoidal inputs. (This will be made mathematically precise in Theorem 13.) In other words, to determine (or iden- tify) a linear system, all one has to do is observe how the system reacts to sinusoidal...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT