Question

Problem (25 points) A typical R134a dry vapor compression refrigerator has a COP of about 1.3 when operating between 15° C an
0 0
Add a comment Improve this question Transcribed image text
Answer #1

abs hr 3一方 n m ste m

Add a comment
Know the answer?
Add Answer to:
Problem (25 points) A typical R134a dry vapor compression refrigerator has a COP of about 1.3 when operating betwee...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem-3 (200) In a vapor-compression refrigeration cycle, R134a exits the evaporator as saturated vapor at -32°C....

    Problem-3 (200) In a vapor-compression refrigeration cycle, R134a exits the evaporator as saturated vapor at -32°C. The refrigerant enters the condenser at 14 bar and 170°C, and saturated liquid exits at 14 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the mass flow rate is 2.987 kg/s, determine (a) Refrigeration capacity in KW (100) (b) The power input to the compressor,...

  • Refrigeration Question 1 a) A refrigerant R134a refrigerator is to maintain the refrigerated spac...

    Refrigeration Question 1 a) A refrigerant R134a refrigerator is to maintain the refrigerated space at -100C. Would you recommended an evaporator pressure of 1.6 bar or 2 bar for this system? Why? -la An automotive Air conditioner using refrigerant R134a as the working fluid and operating on ideal vapor compression refrigerant cycle is to maintain a space at 24°C while operating its condenser at 1000 kPa. Determine the COP of the system when a temperature difference of 14°C is allowed...

  • Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with...

    Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with ammonia as the working fluid, has an evaporator temperature of -20°C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of refrigerant is 3 kg/minute. Determine the coefficient of performance and the refrigerating capacity in tons. Given: Find: T-s Process Diagram: Schematic Assume:

  • 15% A refrigerator using refrigerant-134a as the working fluid operates on an actual vapor compression ugeration...

    15% A refrigerator using refrigerant-134a as the working fluid operates on an actual vapor compression ugeration cycle between 0.12 MPa and 1 MPa. The refrigerant leaves the compressor at 60°C and leaves condenser as a saturated liquid. If the mass flow rate is 1 kg/s, determine the COP of the system. If an adiabatic, reversible expansion device were available and used to expand the liquid leaving the condenser, how much would the COP improve by using this device instead of...

  • Problem 2 (30 pts): Consider a two-stage vapor-compression refrigeration system operating between the pressure limits of...

    Problem 2 (30 pts): Consider a two-stage vapor-compression refrigeration system operating between the pressure limits of 1.5 MPa and 150 kPa with refrigerant-134a as the working fluid. The refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.45 MPa. The mass flow rate of the refrigerant through the low pressure compressor is 0.15 kg/s. Assuming the refrigerant leaves the evaporator as a saturated vapor, determine (a) the mass flow rate of the...

  • (12 points) A refrigerator using refrigerant-134a as the working fluid operates on the vapor compression cycle....

    (12 points) A refrigerator using refrigerant-134a as the working fluid operates on the vapor compression cycle. The cycle operates between 200 kPa and 1.2 MPa. The refrigerant flows through the cycle at a rate of 0.019 kg/s. The (actual) refrigerator has a compressor with an isentropic efficiency of 85%. The refrigerant enters the compressor slightly superheated by 56 C hint add this to the saturation temperature). The refrigerant leaves the condenser slightly subcooled by 1.9°C. What is the rate of...

  • Warm region H The compressor of the vapor-compression refrigerator takes in 0.2 kg/s of R134a as...

    Warm region H The compressor of the vapor-compression refrigerator takes in 0.2 kg/s of R134a as a saturated vapor at 100 kPa. It has a compression ratio of 10 and an isentropic efficiency of 85%. The fluid exits the condenser with a temperature of 35°C. a. Calculate the COP b. Find the power used by the compressor (kw) c. Determine the entropy change across the valve (kJ/kgK). d. Draw the T-s diagram. 1. Condenser Expasion Compressor device Evaporator Cold region...

  • Tt (12 points) A refrigerator using refrigerant-134a as the working fluid operates on the vapor compression...

    Tt (12 points) A refrigerator using refrigerant-134a as the working fluid operates on the vapor compression cycle. The cycle operates between 200 kPa and 1.2 MPa. The refrigerant flows through the cycle at a rate of 0.015 kg/s. The actual) refrigerator has a compressor with an isentropic efficiency of 82%. The refrigerant enters the compressor slightly superheated by 6.2°C (hint: add this to the saturation temperature). The refrigerant leaves the condenser slightly subcooled by 1.8°C. What is the rate of...

  • Ammonia flows at 250 kg/s through an ideal vapor-compression refrigeration cycle. The ammonia enters the compressor...

    Ammonia flows at 250 kg/s through an ideal vapor-compression refrigeration cycle. The ammonia enters the compressor as saturated vapor at-10°C and exits the condenser as saturated liquid at 1000 kPa. Determine the: (a) refrigerant temperature leaving the compressor (b) refrigerant temperature leaving the condenser (c) refrigerant temperature leaving the expansion valve (d) coefficient of performance (e) refrigeration capacity, in tons.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT