Question

Argon enters an adiabatic turbine at 800°C and 1.5 MPa at a rate of 120 kmol/hr and exits at 200 kPa. If the isentropic...

Argon enters an adiabatic turbine at 800°C and 1.5 MPa at a rate of 120 kmol/hr and exits at 200 kPa. If the isentropic efficiency of the turbine is 90% determine:

A) The actual power output

B)The actual exit temperature

C)Sgen

0 0
Add a comment Improve this question Transcribed image text
Answer #1

CN 上-,1.5%103 3 60 0 558-34丁7s6

Add a comment
Know the answer?
Add Answer to:
Argon enters an adiabatic turbine at 800°C and 1.5 MPa at a rate of 120 kmol/hr and exits at 200 kPa. If the isentropic...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...

    NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...

  • Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s

    Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s, and leaves at 100 kPa and 75 m/s. If the power output of the turbine is 5 MW and the isentropic efficiency is 77 percent, determine: A. the mass flow rate of steam through the turbine, B. the temperature at the turbine exit, and C. the rate of entropy generation during this process.

  • Air enters an adiabatic turbine at 2.8 MPa and 400oC and expands to a lower pressure...

    Air enters an adiabatic turbine at 2.8 MPa and 400oC and expands to a lower pressure of 150 kPa. Assume an isentropic efficiency of 90% for the turbine. Determine the actual outlet temperature of the turbine.

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s

    Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s, and leaves at 150 kPa and 350 m/s. The isentropic efficiency of the turbine is 85%. Neglect potential energy. (I) Determine the exit temperature of the steam, and its quality (if saturated mixture)  (ii) Calculate the actual power output of the turbine, in kW (iii)  Illustrate a T-s diagram with respect to saturation lines for the isentropic process by clearly indicating all pressure, temperature,...

  • An adiabatic turbine operates at steady state. Air enters the turbine at a pressure and temperature...

    An adiabatic turbine operates at steady state. Air enters the turbine at a pressure and temperature of 800 kPa and 1100 K, respectively, and exits at 100 kPa. A temperature sensor at the turbine exit indicates that the exit air temperature is 700 K. Kinetic and potential energy effects are negligible, and the air can be treated as an ideal gas. Determine if the exit temperature reading can be correct. If yes, determine the turbine isentropic efficiency.

  • 1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor...

    1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor at 100kPa at a rate of 0.7 m/min and exits at 1-MPa pressure. The isentropic efficiency of the compressor is 87%. R-134a Compressor Isentropic Compressor Work hs-h 100 kPa sat. vapor Actual Compressor Work Determine the refrigerant properties at the inlet and outlet for an isentropic process. Actual 2s entropic procEss Inlet state Determine the actual isentropic enthalpy from the efficiency. (Ans: 289.71 J/kg)...

  • Argon enters an insulated nozzle at 280 kPa, 1300 K, 10 m/s and exits at 645...

    Argon enters an insulated nozzle at 280 kPa, 1300 K, 10 m/s and exits at 645 m/s. Assume argon is an ideal gas and has a constant specific heat. Determine a) The exit temperature of the argon under the actual process (K). b) The ideal exit temperature of the argon (K) under the isentropic process if the isentropic efficiency of the nozzle is 90 percent. c) The exit pressure of the argon (kPa). d) The amount of specific entropy generation...

  • 6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of...

    6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 0.7 m3/min and exits at 1 MPa pressure. If the isentropic efficiency of the compressor is 87%, determine (a) the temperature of the refrigerant at the exit of the compressor, (b) the power input (in kW), and (c) the rate of entropy generation during this process.

  • 11) An adiabatic compressor is to be powered by a direct-coupled adiabatic turbine that is also...

    11) An adiabatic compressor is to be powered by a direct-coupled adiabatic turbine that is also driving a generator. Steam enters the turbine at 10 MPa and 500 °C at a rate of 15 kgs and exits at 20 kPa. The turbine isentropic efficiency is 85% Air enters the compressor at 98 kPa and 230C at a rate of 10 kg/s, and exits the compressor at 1.2 MPa. The compressor efficiency is 75 %. Determine: a) the power requirement of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT