Question

(1) Let P denote the solid bounded by the surface of the hemisphere zV1--y2 and the cone z-Vx2 + y2 and let n denote an outwa

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:

a)

outward normal for the sphere is

rl 2

r-cos θ r-sin θ _-.,T In cylindrical coordinates, n

2π FluxsphereJo

2T lid.A FluxsphereJo 0

2π FluxsphereJo Jo

r.2 cos θ-, r-sin_.r<) drd@ FluxsphereJo

2π r 〉 drd@ FluxsphereJo Jo

\text{Flux}_{\text{sphere}}=\int_0^{2\pi}\int_0^{\frac{1}{\sqrt{2}}}\left ( \frac{r^3\sin \theta\cos \theta}{\sqrt{1-r^2}}+r^3\sin^2 \theta+2r^2\cos \theta \right ) \mathrm{d}r \mathrm{d}\theta

de 2π cos (0) sin (0) Fluxsphere

·2 cos FluXplereH3sin2(0) + (32-5-21)cos(9)sin(0) + 2;cos(2) Fluxsphere 48

3 sin (20)-24 sin (0) + (64-5-2) cos2 (0)-6θ [ 1 Fluxsp here - 192

\text{Flux}_{\text{sphere}}=\frac{\pi}{16}

\text{outward normal for the cone is, }

\text{In cylindrical coordinates, }\vec{n}=\left \langle {-r\cos \theta},{-r\sin \theta},r \right \rangle

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\int_0^{\frac{1}{\sqrt{2}}}\vec{\text{F}}\cdot \hat{n}\mathrm{d}S

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\int_0^{\frac{1}{\sqrt{2}}}\vec{\text{F}}\cdot \frac{\vec{n}}{\left \| \vec{n} \right \|}\left \| \vec{n} \right \|\mathrm{d}A

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\int_0^{\frac{1}{\sqrt{2}}}\vec{\text{F}}\cdot \vec{n}\mathrm{d}A

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\int_0^{\frac{1}{\sqrt{2}}}\vec{\text{F}}\cdot \left \langle -r\cos \theta, -r\sin \theta, r \right \rangle \mathrm{d}r \mathrm{d}\theta

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\int_0^{\frac{1}{\sqrt{2}}}\left \langle r\sin \theta,r\sqrt{1-r^2}\sin \theta,2r\cos \theta \right \rangle\cdot \left \langle -r\cos \theta, -r\sin \theta, r \right \rangle \mathrm{d}r \mathrm{d}\theta

2n 2V1-r2 sin2 θ + 2,2 cos θ) drdθ Fluxcone-

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\left [ -\sin^2\left({\theta}\right)\left(\dfrac{\arcsin\left(r\right)}{8}-\dfrac{r\left(1-r^2\right)^\frac{3}{2}}{4}+\dfrac{r\sqrt{1-r^2}}{8}\right)-\dfrac{\cos\left({\theta}\right)\sin\left({\theta}\right)r^3}{3}+\dfrac{2\cos\left({\theta}\right)r^3}{3} \right ]_0^{\frac{1}{\sqrt{2}}} \mathrm{d}\theta

\text{Flux}_{\text{cone}}=\int_0^{2\pi}\left ( -\dfrac{3{\pi}\sin^2\left({\theta}\right)+2^\frac{7}{2}\cos\left({\theta}\right)\sin\left({\theta}\right)-2^\frac{9}{2}\cos\left({\theta}\right)}{96} \right )\mathrm{d}\theta

\text{Flux}_{\text{cone}}=\left [ \dfrac{3{\pi}\sin\left(2{\theta}\right)+2^\frac{13}{2}\sin\left({\theta}\right)+2^\frac{9}{2}\cos^2\left({\theta}\right)-6{\pi}{\theta}}{384} \right ]_0^{2\pi}

\text{Flux}_{\text{cone}}=\frac{\pi}{16}

\text{Therefore, Flux}_{\text{total}}=\text{Flux}_{\text{sphere}}+\text{Flux}_{\text{cone}}=\frac{\pi}{16}+\frac{\pi}{16}=\frac{\pi}{8}

\text{b)}

\text{Flux}_{\text{total}}=\int \int \int_E\text{div}\vec{\text{F}}\mathrm{d}V

Fluxtotal-

\text{Flux}_{\text{total}}=\int \int \int_Ez\mathrm{d}V

\text{Flux}_{\text{total}}=\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^1\rho \cos \phi \left ( \rho^2 \sin \phi \mathrm{d}\rho \mathrm{d}\phi \mathrm{d}\theta \right )

\text{Flux}_{\text{total}}=\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^1\rho^3 \sin \phi \cos \phi \mathrm{d}\rho \mathrm{d}\phi \mathrm{d}\theta

\text{Flux}_{\text{total}}=\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \left [ \frac{\rho^4}{4} \right ]_0^1 \sin \phi \cos \phi \mathrm{d}\phi \mathrm{d}\theta

\text{Flux}_{\text{total}}=\frac{1}{4}\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \sin \phi \cos \phi \mathrm{d}\phi \mathrm{d}\theta

\text{Flux}_{\text{total}}=\frac{1}{4}\int_0^{2\pi}\left [ -\dfrac{\cos^2\left({\varphi}\right)}{2} \right ]_0^{\frac{\pi}{4}} \mathrm{d}\theta

\text{Flux}_{\text{total}}=\frac{1}{16}\int_0^{2\pi} \mathrm{d}\theta

\text{Flux}_{\text{total}}=\frac{2\pi}{16}=\frac{\pi}{8}

Add a comment
Know the answer?
Add Answer to:
(1) Let P denote the solid bounded by the surface of the hemisphere zV1--y2 and the cone z-Vx2 + y2 and let n denote an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT