Question

Consider second order system Ce()+250 C( ) + 0Ct) - oR(t ) where R(t) is the system input, C(t) the system response, r time,

0 0
Add a comment Improve this question Transcribed image text
Answer #1

>Llution Given c2n(afay CHt Hakin Caflace Torfem alove eution e et Cis(stt afanstonJ = an° R es R(S) hSle Hurctin >So Chamctreohen, (eaCavedampal Syste ,2= Sydefaul Phe Second rde Conte System is undedomkd pke HAe alove ay Cafes ge the Stndasd aralyF ( (stebesknge) ;Put -0tn uadin ,e get e(s) = we Can e alove euation BS+C) Cy usig Partial feartion Technigue C(s)= al belou

Add a comment
Know the answer?
Add Answer to:
Consider second order system Ce()+250 C( ) + 0Ct) - oR(t ) where R(t) is the system input, C(t) the system response, r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question three The figure below shows a unit step response of a second order system. From...

    Question three The figure below shows a unit step response of a second order system. From the graph of response find: 1- The rise timet, 2- The peak timet, 3- The maximum overshoot Mp 4- The damped natural frequency w 5. The transfer function. Hence find the damping ratio ζ and the natural frequency ah-Find also the transfer function of the system. r 4 02 15 25 35 45 Question Four For the control system shown in the figure below,...

  • Q1. The figure shows a response of second order system for unit step input. If the...

    Q1. The figure shows a response of second order system for unit step input. If the system damping is 40 Ns/m and the critical damping is 400 Ns/m, find damping ratio, damped and un-damped natural frequencies (wd, Wn). a-mp、ng.. wo damping :wou r, s / m r's/ m //cm ricr./ Stap Ras ponas

  • The unit step response of a second order system is 2- The unit step response of a second order system is Ste Consider the following statements: i) The under damped natural frequency is ii) The da...

    The unit step response of a second order system is 2- The unit step response of a second order system is Ste Consider the following statements: i) The under damped natural frequency is ii) The damping ratio is iii) The impulse response is 2- The unit step response of a second order system is Ste Consider the following statements: i) The under damped natural frequency is ii) The damping ratio is iii) The impulse response is

  • please help to solve this. Thank you B1. Consider the second order system where damping ratio...

    please help to solve this. Thank you B1. Consider the second order system where damping ratio 3-0.6 and natural angular frequency Ww=5 rad/sec. find the rise time tr, peak time tp, maximum overshoot Mp, and settling time ts (2%) when the system is subjected to a unit-step input. I B2. Find the steady-state errors for inputs of 5 u(t), 5t u(t), and 5t.u(t) to the system shown in the following figure. The function u(t) is the unit step. R(S) +...

  • Problem1 The response of an underdamped second order system to a step input can be expressed as a...

    Problem1 The response of an underdamped second order system to a step input can be expressed as a) Plot the system's response and from this response, explain how you would determine the rise time and settling time of the system (define these terms) b) If the experimentally observed damped period of oscillation of the system is 0.577ms and, from a logarithmic decrement analysis, the damping ratio is found to be is the damped circular frequency of the system? the natural...

  • Consider the differential equation y(t) + 69(r) + 5y( Q3. t)u(t), where y(0) (0)0 and iu(t) is a ...

    Matlab code for the following problems. Consider the differential equation y(t) + 69(r) + 5y( Q3. t)u(t), where y(0) (0)0 and iu(t) is a unit step. Deter- mine the solution y(t) analytically and verify by co-plotting the analytic solution and the step response obtained with the step function. Consider the mechanical system depicted in Figure 4. The input is given by f(t), and the output is y(t). Determine the transfer function from f(t) to y(t) and, using an m-file, plot...

  • 1: The plot shown below represents the step response of a second-order LTI system (with input...

    1: The plot shown below represents the step response of a second-order LTI system (with input (t) and output y(t)) with zero initial conditions. From the step response: (a) Estimate the peak time tp, and the maximum percentage overshoot %Mp. (b) Estimate the natural frequency wn and the damping ratio c. (c) Derive a differential equation corresponding to this system using the results of parts (a) and (b). Step Response X: 085 Y: 1.261 Amplitude 0 0.5 1 1.5 2...

  • 1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the...

    1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the closed loop transfer function TF(s) γ(s) R(s) What are the poles and zeros of TF1(s)? [2 marks] b) For TF(s), calculate the DC gain, natural frequency and damping ratio. Classify TF1(s) as underdamped overdamped, critically damped or undamped [3 marks] c) Use the initial value theorem and final value theorem to determine the initial value (Mo) and final value (M) of the [2 marks]...

  • Consider following block diagram, R(s) G(s) c(s) 5 a) Find time-domain unit-step response c(t) of the...

    Consider following block diagram, R(s) G(s) c(s) 5 a) Find time-domain unit-step response c(t) of the system when G(s)=– , and then specify forced S +4 and natural parts of the response. 10 b) Find time-domain unit-step response c(t) of the system when G(s) == and then (s + 2)(s +5) specify forced and natural parts of the response.

  • Problem1 The response of an underdamped second order system to a step input can be expressed...

    Problem1 The response of an underdamped second order system to a step input can be expressed as a) Plot the system's response and from this response, explain how you would determine the rise time and settling time of the system (define these terms) b) If the experimentally observed damped period of oscillation of the system is 0.577ms and, from a logarithmic decrement analysis, the damping ratio is found to be is the damped circular frequency of the system? the natural...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT