Question

Tor steam power prants 4 marks D) A steam power plant is to be designed using the Rankine cycle with superheat. The steam mus

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Tor steam power prants 4 marks D) A steam power plant is to be designed using the Rankine cycle with superheat. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A steam power plant operates on the Rankine cycle modified to include superheat. The steam leaves...

    A steam power plant operates on the Rankine cycle modified to include superheat. The steam leaves the superheater at a pressure of 40 bar and a temperature of 500oC. After expansion in the turbine, which has an isentropic efficiency of 82%, the steam exhausts into the condenser at a pressure of 0.2 bar. Neglecting feed pump work calculate :- 1. The Thermal Efficiency of the plant. 2. The specific steam consumption. 3. The required mass flow rate of steam if...

  • Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam...

    Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam enters both the high- and low- pressure turbines at 600oC. The maximum and minimum pressures of the cycle are 20 MPa and 20 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 74 percent and that of the pump is 95 percent. Determine the quality (or temperature, if superheated) of the...

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • . A steam power plant that operates on Rankine cycle has a net power output of...

    . A steam power plant that operates on Rankine cycle has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500o C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a sea through the tubes of the condenser at rate of 2000 kg/s. Show the cycle on T‐s diagram with respect to saturation line, and determine (a) the thermal efficiency of the cycle, (b) the...

  • 2) Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam...

    2) Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, and (c) the mass flow rate of the steam.

  • A power plant operates on a superheat vapor power cycle with water is the working fluid....

    A power plant operates on a superheat vapor power cycle with water is the working fluid. Superheated steam enters the turbine at 80 bar, 480° C, and expands to 0.08 bar to the condenser and becomes saturated liquid enters the feed water pump. The net cycle work output is 100 MW. Assume isentropic process exists at the turbine and the pump. (a) Sketch the schematic and T-S diagram of the power cycle (5%), (b) determine the heat input to the...

  • C. (35%) A power plant operates on a superheat vapor power cycle with water is the...

    C. (35%) A power plant operates on a superheat vapor power cycle with water is the working fluid. Superheated steam enters the turbine at 80 bar, 480° C, and expands to 0.08 bar to the condenser and becomes saturated liquid enters the feed water pump. The net cycle work output is 100 MW. Assume isentropic process exists at the turbine and the pump. (a) Sketch the schematic and T-S diagram of the power cycle (5%), (b) determine the heat input...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT