Question

Consider the following initial value problem у(0) — 0. у%3D х+ у, (i) Solve the differential equation above in tabular form w

0 0
Add a comment Improve this question Transcribed image text
Answer #1

h=0.2 usng Eulor mathad y t - SohxoJ 0+02(0+0) O.2+0 =0.2 X1= 0.2, Y,=D (261) 4 IR = 0.2 (0.2) = 0.04 y2 = 440-04 =0.44 X2=0OF +99 03S 62 15 0.0S 08 GRAPHO aek Rungee ute re hd and 9raph aexact ngy g 2

Add a comment
Know the answer?
Add Answer to:
Consider the following initial value problem у(0) — 0. у%3D х+ у, (i) Solve the differential equation above in tabul...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1) Solve the differential equation y 2xy, y(1)= 1 analytically. Plot the solution curve for the interval x 1 to 2 (see...

    (1) Solve the differential equation y 2xy, y(1)= 1 analytically. Plot the solution curve for the interval x 1 to 2 (see both MS word and Excel templates). 3 pts (2) On the same graph, plot the solution curve for the differential equation using Euler's method. 5pts (3) On the same graph, plot the solution curve for the differential equation using improved Euler's method. 5pts (4) On the same graph, plot the solution curve for the differential equation using Runge-Kutta...

  • Complete using MatLab 1. Consider the following initial value problem 3t2-y, y(0) = 1 Using Euler's...

    Complete using MatLab 1. Consider the following initial value problem 3t2-y, y(0) = 1 Using Euler's Method and the second order Runge-Kutta method, for t E [0, 1] with a step size of h 0.05, approximate the solution to the initial value problem. Plot the true solution and the approximate solutions on the same figure. Be sure to label your axis and include an a. appropriate legend b. Verify that the analytic solution to the differential equation is given by...

  • 1. Consider the following differential equation. ag = ty, y(0)=1. dt (a) Use Euler's Method with...

    1. Consider the following differential equation. ag = ty, y(0)=1. dt (a) Use Euler's Method with At = .1 to approximate y(1). (b) Use Euler's Method with At = .05 to approximate y(1). (c) Find the exact solution to the problem. Use this solution to compare the error for the different values of At. What does this say about the method? Note: On the course page there are notes describing an implementation of Euler's method on a spread sheet.

  • ///MATLAB/// Consider the differential equation over the interval [0,4] with initial condition y(0)=0. 3. Consider the...

    ///MATLAB/// Consider the differential equation over the interval [0,4] with initial condition y(0)=0. 3. Consider the differential equation n y' = (t3 - t2 -7t - 5)e over the interval [0,4 with initial condition y(0) = 0. (a) Plot the approximate solutions obtained using the methods of Euler, midpoint and the classic fourth order Runge Kutta with n 40 superimposed over the exact solution in the same figure. To plot multiple curves in the same figure, make use of the...

  • Question 1: Given the initial-value problem 12-21 0 <1 <1, y(0) = 1, 12+10 with exact...

    Question 1: Given the initial-value problem 12-21 0 <1 <1, y(0) = 1, 12+10 with exact solution v(t) = 2t +1 t2 + 1 a. Use Euler's method with h = 0.1 to approximate the solution of y b. Calculate the error bound and compare the actual error at each step to the error bound. c. Use the answers generated in part (a) and linear interpolation to approximate the following values of y, and compare them to the actual value...

  • MATLAB HELP 3. Consider the equation y′ = y2 − 3x, where y(0) = 1.   USE THE EULER AND RUNGE-KUTTA APPROXIMATION SCRIPTS...

    MATLAB HELP 3. Consider the equation y′ = y2 − 3x, where y(0) = 1.   USE THE EULER AND RUNGE-KUTTA APPROXIMATION SCRIPTS PROVIDED IN THE PICTURES a. Use a Euler approximation with a step size of 0.25 to approximate y(2). b. Use a Runge-Kutta approximation with a step size of 0.25 to approximate y(2). c. Graph both approximation functions in the same window as a slope field for the differential equation. d. Find a formula for the actual solution (not...

  • The differential equation : dy/dx = 2x -3y , has the initial conditions that y = 2 , at x = 0 Obt...

    The differential equation : dy/dx = 2x -3y , has the initial conditions that y = 2 , at x = 0 Obtain a numerical solution for the differential equation, correct to 6 decimal place , using , The Euler-Cauchy method The Runge-Kutta method in the range x = 0 (0.2) 1.0

  • (1 point) Suppose that we use Euler's method to approximate the solution to the differential equation...

    (1 point) Suppose that we use Euler's method to approximate the solution to the differential equation dyr. dzvi y(0.4) = 9. Let f(x, y) = 25/y. We let Xo = 0.4 and yo = 9 and pick a step size h=0.2. Euler's method is the the following algorithm. From In and Yn, our approximations to the solution of the differential equation at the nth stage, we find the next stage by computing In+1 = xin + h Y n+1 =...

  • With 5. Consider the differential equation y, f(x,y) with initial condition y(zo) = yo. Show that...

    1 with 5. Consider the differential equation y, f(x,y) with initial condition y(zo) = yo. Show that, zi = zo +h, the solution at x1 can be obtained with an er ror O(h3) by the formula In other words, this formula describes a Runge-Kutta method of order 2. with 5. Consider the differential equation y, f(x,y) with initial condition y(zo) = yo. Show that, zi = zo +h, the solution at x1 can be obtained with an er ror O(h3)...

  • Given a second order linear homogeneous differential equation а2(х)у" + а (х)У + аo(х)у — 0...

    Given a second order linear homogeneous differential equation а2(х)у" + а (х)У + аo(х)у — 0 we know that a fundamental set for this ODE consists of a pair linearly independent solutions yı, V2. But there are times when only one function, call it y, is available and we would like to find a second linearly independent solution. We can find y2 using the method of reduction of order. First, under the necessary assumption the a2(x) F 0 we rewrite...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT