Question

10. At the end of the Sun’s life it will use up the hydrogen and helium...

10. At the end of the Sun’s life it will use up the hydrogen and helium in its core and become a white dwarf. The Sun’s mass is 2.0 × 1030 kg, its radius is 7.0 × 105 km, and it has a rotational period of approximately 28 days. If the Sun should collapse into a white dwarf of radius 3.5 × 103 km, what would its period be if no mass were ejected and a sphere of uniform density can model the Sun both before and after?

11. Much more massive stars than the Sun will collapse into much smaller objects known as neutron stars after exploding . If a star 15 times more massive than the Sun with 8 times the radius had the same initial rotation rate and collapsed into a neutron star with a radius of 15 km, what would its period be if 90% of its mass were ejected taking 90% of its angular momentum. Assume a sphere of uniform density can model the star both before and after?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

10) I = 2mR?, L-IW , 6-2 M= 2.0 x1030kg , R, = 7.0X105 km : R2 = 3.5x105 km , T, = 28 days - L=Lz (Conservation of Angular Mo

Add a comment
Know the answer?
Add Answer to:
10. At the end of the Sun’s life it will use up the hydrogen and helium...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The star Tau Ceti's mass is 1.6 ✕ 1030 kg, its radius is 5.5 ✕ 105...

    The star Tau Ceti's mass is 1.6 ✕ 1030 kg, its radius is 5.5 ✕ 105 km, and it has a rotational period of approximately 34 days. If Tau Ceti should collapse into a white dwarf of radius 7.5 ✕ 103 km, what would its period (in s) be if no mass were ejected and a sphere of uniform density can model Tau Ceti both before and after?

  • Stars much heavier than our sun will not form white dwarf, but collapse further, becoming (if con...

    Stars much heavier than our sun will not form white dwarf, but collapse further, becoming (if condition are right) neutron stars. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei. Eventually neutron degeneracy pressure stabilizes the collapse, just as the electron does for white dwarfs. The Fermi Energy is given by where Z/A =1 and V corresponds to volume. The neutron...

  • 1. Three children are riding on the edge of a merry-go-round that is 142 kg, has...

    1. Three children are riding on the edge of a merry-go-round that is 142 kg, has a 1.60 m radius, and is spinning at 17.3 rpm. The children have masses of 22.4, 27.5, and 38.8 kg. If the child who has a mass of 38.8 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm? 2. The star Tau Ceti's mass is 1.6 ✕ 1030 kg, its radius is 5.5 ✕ 105 km, and...

  • 2) Densities We discussed White Dwarfs and Neutron stars, very dense objects compared to stars like...

    2) Densities We discussed White Dwarfs and Neutron stars, very dense objects compared to stars like our sun. On the other hand, we also discussed Red Giants which are much less dense than our sun. To realize just how dense, please compute the average densities (in kg/m) for a) the sun (Rsun=7 x 10 km, Msun= 2 x 1030 kg) b) when the sun becomes a red giant (R= 1AU, M=Msun). By what factor is a Red Giant less dense...

  • 14 1 point The Sun's mass is 2.0 x 100 kg. its radius is 7.0 x 10 km, and it has a rotational period of 30 days. If...

    14 1 point The Sun's mass is 2.0 x 100 kg. its radius is 7.0 x 10 km, and it has a rotational period of 30 days. If the Sun were to collapse into a white dwarf of radius 5080 km, what would the period of the white dwarf be? Give you answer in units of seconds and assume three sig figs. Further assume that no mass is lost in the process and that the Sun is a sphere with...

  • Neutron stars are created when giant stars die in supernovas and their remaining cores collapse to...

    Neutron stars are created when giant stars die in supernovas and their remaining cores collapse to a state of immense density where protons and electrons combine to form neutrons. A neutron star is ~1.4 times as massive as the sun and has radius of only ~10 km. For this neutron star compute its escape velocity. What percentage of the speed of light does this correspond to? (Assume for the mass of the sun, M = 1.989 x 10^30 kg).

  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons...

    Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 1014 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 6.0×105 km (comparable to our sun); its final radius is 17 km. If the original star rotated once in...

  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons...

    Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 1014 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 9.0×105 km (comparable to our sun); its final radius is 18 km . Part A If the original star...

  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutr...

    Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 10^14 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 7.0×10^5 km (comparable to our sun); its final radius is 18km . If the original star rotated once in...

  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons...

    Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 1014 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star’s initial radius was 7.0 × 105km (comparable to our sun); its final radius is 16 km. If the original star rotated once...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT