Question

A uniform solid sphere of radius r=0.490 m and mass m=14.5 kg


A uniform solid sphere of radius r=0.490 m and mass m=14.5 kg turns clockwise about a vertical axis through its center (when viewed from above), at an angular speed of 3.20 rad / s. What is its vector angular momentum about this axis?

(Enter the magnitude in kg · m² / s.)


1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Solution) R = 0.490 m

m = 14.5 kg

w = 3.20 rad/s

Angular momentum , L = ?

L = (I)(w)

I = (2/5)(m)(R^2)

I is moment of inertia of solid sphere

L = (2/5)(14.5)(0.490^2)(3.20)

L = 4.45 kgm^2/s

Direction is downwards

Add a comment
Know the answer?
Add Answer to:
A uniform solid sphere of radius r=0.490 m and mass m=14.5 kg
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • part 1 A thin, hollow sphere of radius r = 0.480 m and mass m =...

    part 1 A thin, hollow sphere of radius r = 0.480 m and mass m = 13.5 kg turns counterclockwise about a vertical axis through its center (when viewed from above), at an angular speed of 2.90 rad/s. What is its vector angular momentum about this axis? (Enter the magnitude in kg. m2/s.) magnitude kg . m/s direction ---Select--- part 2 A particle of mass 0.500 kg is attached to the 100-cm mark of a meterstick of mass 0.200 kg....

  • Apps Internship Applicati. P Free MCAT Practice... kg. m/s Principles of Chemi... Seton Hall Universit. W...

    Apps Internship Applicati. P Free MCAT Practice... kg. m/s Principles of Chemi... Seton Hall Universit. W MCAT CARS Practie. What's on the MCA Need Help? Read it Master It Viewing Saved Work Revert to Last Response 3. -12 points SerPSE10 11.3.OP.012. My Notes Ask Your Teacher A uniform solid sphere of radius r = 0.490 m and mass m = 14.5 kg turns clockwise about a vertical axis through its center (when viewed from above), at an angular speed of...

  • A uniform solid disk of mass m = 3.06 kg and radius r = 0.200 m...

    A uniform solid disk of mass m = 3.06 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.09 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim?...

  • A uniform solid disk of mass m = 3.08 kg and radius r = 0.200 m...

    A uniform solid disk of mass m = 3.08 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.09 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim?...

  • A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal...

    A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal plane and rotates in that plane about a pivot at one of its ends. The rod makes one rotation every 0.39 second and rotates clockwise as viewed from above its plane of rotation. A)Find the magnitude of the rod’s angular momentum about its rotation axis, in units of kgm^/s. b) find the rotational kinetic energy, in joules, of the rod described in part (a)....

  • (a) A uniform disk of mass 14 kg, thickness 0.5 m, and radius 0.4 m is located at the origin, oriented with its axis al...

    (a) A uniform disk of mass 14 kg, thickness 0.5 m, and radius 0.4 m is located at the origin, oriented with its axis along the y axis. It rotates clockwise around its axis when viewed from above (that is, you stand at a point on the +y axis and look toward the origin at the disk). The disk makes one complete rotation every 0.5 s. What is the rotational angular momentum of the disk? What is the rotational kinetic...

  • 4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates...

    4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the sphere, over a pulley of rotational inertia 1-1.60 kg. m2, and radius r = 0.40 m, and is attached to a block of mass m 8.00 kg which is released from rest. The cord does not slip on the sphere or pulley, and the pulley bearings are frictionless....

  • A uniform solid sphere with a mass M = 2.0 kg and a radius R =...

    A uniform solid sphere with a mass M = 2.0 kg and a radius R = 0.10 m is set into motion with an angular speed ωo = 70 rad/s. At t = 0 the sphere is dropped a short distance (without bouncing) onto a horizontal surface. There is friction between the sphere and the surface. Find (a) the angular speed of rotation when the sphere finally rolls without slipping at time t = T and (b) the amount of...

  • Calculate the angular momentum for a rotating disk, sphere, and rod. (a) A uniform disk of...

    Calculate the angular momentum for a rotating disk, sphere, and rod. (a) A uniform disk of mass 16 kg, thickness 0.5 m, and radius 0.9 m is located at the origin, oriented with its axis along the y axis. It rotates clockwise around its axis when viewed from above (that is, you stand at a point on the +y axis and look toward the origin at the disk). The disk makes one complete rotation every 0.7 s. What is the...

  • Each of the following objects has a radius of 0.145 m and a mass of 2.60...

    Each of the following objects has a radius of 0.145 m and a mass of 2.60 kg, and each rotates about an axis through its center (as in this table) with an angular speed of 41.8 rad/s. Find the magnitude of the angular momentum of each object. (a) a hoop kg · m2/s (b) a solid cylinder kg · m2/s (c) a solid sphere kg · m2/s (d) a hollow spherical shell kg · m2/s

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT