Question

Two masses of 25000kg each are placed 40m away from each other. What is the gravitational...

Two masses of 25000kg each are placed 40m away from each other. What is the gravitational force between them? (Newton's constant is G = 6.7 x 10^(-11) in SI units).

Answer: 2.617E-5

The answer is given, but I would like to know how to do this problem.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

hrarita on nl force between wo is §iven by mess es is tance - r mim F- m, m : 25 x1o ks, >: 4 o m (4 )2 -5 2.6> x 10 Newton F

Add a comment
Know the answer?
Add Answer to:
Two masses of 25000kg each are placed 40m away from each other. What is the gravitational...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Learning Goal: To understand Newton's law of gravitation and the distinction between inertial and gravitational masses....

    Learning Goal: To understand Newton's law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton's law of gravitation. According to that law, the magnitude of the gravitational force Fg between two small particles of masses m1 and m2 separated by a distance r, is given by m1m2 T2 where G is the universal gravitational constant, whose numerical value (in SI units) is 6.67 x 10-11 Nm2 kg2 This formula applies not...

  • ± Gravitational Force of Three Identical Masses Part A What is the magnitude of the net...

    ± Gravitational Force of Three Identical Masses Part A What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two Three identical very dense masses of 6500 kg each are placed on the x axis. One mass is at Zl = 120 cm, one is at the origin, and one is at r2- 330 cm masses? Take the gravitational constant to be G 6.67x10-11 N m2/kg Express your answer in...

  • Laboratory Unversal Gravitational Law please answer all 3 cases. thank you Laboratory universal gravitational law Answer...

    Laboratory Unversal Gravitational Law please answer all 3 cases. thank you Laboratory universal gravitational law Answer all cases please. (Equation 11 Where: - mass of one object in ks - mass of the other object in kg G-Newton's Universal Gravitational Constant r - distance between the two masses in meters Case 1: Glven two masses. - 100 kg = 400 kg, and the attractive force between the two masses is Newtons Case 2: Glven two masses... 230 kg. - 280...

  • Four identical masses of mass 8.00 kg each are placed at the corners of a square...

    Four identical masses of mass 8.00 kg each are placed at the corners of a square whose side lengths are 2.50 m. Part A What is the magnitude of the net gravitational force on one of the masses, due to the other three? Express your answer with the appropriate units. Feet = Value Units Submit Request Answer - Part B What is the direction of the net gravitational force on one of the masses, due to the other three? perpendicular...

  • Three identical very dense masses of 6000 kg each are placed on the x axis. One...

    Three identical very dense masses of 6000 kg each are placed on the x axis. One mass is at x1 = -120 cm , one is at the origin, and one is at x2 = 450 cm . Q: What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 . Q: What is the direction of the net...

  • Review Three identical very dense masses of 5700 kg each are placed on the x axis....

    Review Three identical very dense masses of 5700 kg each are placed on the x axis. One mass is at 150 cm, one is at the origin, and one is at 2 380 cm Part A What is the magnitude of the net gravitational force Faray on the mass at the origin due to the other two masses? Take the gravitational constant to be G 6.67x10-1 N m2/kg2 . Express your answer in newtons to three significant figures View Available...

  • Three identical masses of 570 kg each are placed on the x axis. One mass is at x1 = -150 cm , one is...

    Three identical masses of 570 kg each are placed on the x axis. One mass is at x1 = -150 cm , one is at the origin, and one is at x2 = 350 cm . Part A What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 . Express your answer in Newtons.

  • Three identical masses of 570 kg each are placed on the x axis. One mass is at x1 = -150 cm , one is...

    Three identical masses of 570 kg each are placed on the x axis. One mass is at x1 = -150 cm , one is at the origin, and one is at x2 = 350 cm . Part A What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 . Express your answer in Newtons.

  • Three identical very dense masses of 5100 kg each are placed on the x axis. One...

    Three identical very dense masses of 5100 kg each are placed on the x axis. One mass is at x1 = -110 cm , one is at the origin, and one is at x2 = 350 cm . What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2 / kg2 .

  • Three identical very dense masses of 7000 kg each are placed on the x axis. One...

    Three identical very dense masses of 7000 kg each are placed on the x axis. One mass is at x1 = -130 cm , one is at the origin, and one is at x2 = 350 cm . What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT