Question

Please help and show work. Thanks!

(3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put th

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given com = A/B = 22.44L a) Tuitially P = 1 bar PU SMRT - 1x 22.44 L bar = 269.90k T UR mkix 0.08314 Dark mot constant pressuprem first taco of thermodynamics du = qtw . = 7854.1799 – 22427099 z 61.4699955 asp = nepln (4) = 1x 7 x Rx kn ( 22.44X2) asAH = aut udp usipdu at constant volume pdu=0 4H = au + v(Pz-) at constout volume at constant volume = P2T 2 - PR → = constantwhile cycle. net work = w twat wa --- 22427099 +0 - 155365077 = -3,796.3676 J = -3.796 KT q = 21+22+23 = 7854.1799 - 5609.87

Add a comment
Know the answer?
Add Answer to:
Please help and show work. Thanks! (3). A sample of 1.00 mol ideal gas molecules with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (3). A sample of 1.00 mol ideal gas molecules with Com= 7/2 R is initially at...

    (3). A sample of 1.00 mol ideal gas molecules with Com= 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • A sample of 1.00 mol ideal gas molecules with Cpm 7/2 R is initially at p 1.00 bar and V 22.44 L and then put tho...

    A sample of 1.00 mol ideal gas molecules with Cpm 7/2 R is initially at p 1.00 bar and V 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is...

    (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, ΔU, ΔH, ΔS for each process and for the whole cycle. (20 pts)

  • (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then p...

    (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, ΔU, ΔH, ΔS for each process and for the whole cycle.

  • Please answer the following question completely and correctly. Please show all work and write neatly. 3....

    Please answer the following question completely and correctly. Please show all work and write neatly. 3. A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for...

  • A sample of 1.00 mol perfect gas molecules

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2 R is put through the following cycle:(a) Constant-volume heating to twice its initial volume,(b) Reversible, adiabatic expansion back to its initial temperature,(c) Reversible isothermal compression back to 1.00 atm. Calculate q, w, ?U, and ?H for each step and overall.

  • A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K...

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K and 1.00 atm is put through the following cycle: (a) Constant volume heating to twice its initial pressure, (b) Reversible, adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to 1.00 atm. Calculate q, w, ΔU, and ΔH for each step and overall (assume the initial temp is 298 K).

  • 1 00 mol of a perfect gas initially at 1 00 atm and 298 K with...

    1 00 mol of a perfect gas initially at 1 00 atm and 298 K with Cpm (7/2) R is put through the following cycle () constant-volume heating to twice its initial temperature (u) reversible, adiabatic expansion back to its onginal temperature () reversible, isothermal compression back to 1 00 atm Calculate q, w, AU, and AH for each of the steps ()-(m) above Hints First calculate AU, then q AH easily follows Remember the meaning of an adiabatic process...

  • Assume there's 1 mol ideal mono-atomic gas in a 22.4L container at 300K. The initial entropy...

    Assume there's 1 mol ideal mono-atomic gas in a 22.4L container at 300K. The initial entropy of the system is 100J/K. For the following processes, calculate: a) q and w for a reversible expansion to twice the volume, isothermally. b) S and G for irreversible isothermal expansion against a constant 0.5 bar external pressure, to a final internal pressure of 0.5 bar. c) U and H for adiabatic reversible expansion to twice the volume.

  • A 1.00-mol sample of an ideal gas (γ = 1.40) is carried through the Carnot cycle....

    A 1.00-mol sample of an ideal gas (γ = 1.40) is carried through the Carnot cycle. Before the isothermal expansion takes place, the pressure of the gas is 25.0 atm and the temperature is 600 K. Before the isothermal compression, the pressure is 1.00 atm and the temperature is 400 K. Determine the pressures and volumes at all end points in the Carnot cycle (at each end point, the cycle switches between different processes).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT