Question

a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa...

a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa and 300o C. The carbon dioxide is then compressed to 200 kPa following a process of Pv1.25 =constant. Determine

(A) the boundary worked needed for the process

(B) The temperature after compression . use Ideal gas state and Pressure in absolute pressure ; R=0.1889 KJ/Kg-K

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 2 A spring-loaded piston-cylinder device contains 1 kg of carbon dioxide that is initially at...

    Problem 2 A spring-loaded piston-cylinder device contains 1 kg of carbon dioxide that is initially at 100 kPa and 25°C (State 1). Heat is added until the gas reaches 800°C, at which point the pressure is 300 kPa (State 2) (a) Determine the boundary work (kJ) done by the CO2. Assume the spring is linear. (b) Determine the amount of heat transfer (kJ) into the CO2. Data for CO2: R = 0.1889 kJ/(kg K), Cpo = 0.846 kJ/(kg K), Cvo...

  • A piston-cylinder arrangement contains Carbon dioxide (CO2) initially at 66 kPa and 400 K, undergoes an...

    A piston-cylinder arrangement contains Carbon dioxide (CO2) initially at 66 kPa and 400 K, undergoes an expansion process with pressure-volume relationship of PV 1.2 = Costant.to a final temperature of 298 K. Assuming the gas to be an ideal gas, determine the final pressure (kPa), the work done and the heat transfer each in kJ.

  • (6). (12 points) A piston-cylinder device contains 0.25 kg of air initially at 1.8 MPa and...

    (6). (12 points) A piston-cylinder device contains 0.25 kg of air initially at 1.8 MPa and 360 °C. The air is first expanded isothermally to 400 kPa, then compressed polytropically, with a polytropic exponent of 1.2 to the initial pressure, and finally compressed at the constant pressure to the initial state. Pease find: (a) (3p) The boundary work for the isothermal expansion process. (b) (3p) The boundary work for the polytropic compression process. (c) (3p)The boundary work for the constant...

  • A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...

    A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • A piston-cylinder contains 1.8 kg of carbon dioxide at 190°C and 1.7 MPa. It is compressed...

    A piston-cylinder contains 1.8 kg of carbon dioxide at 190°C and 1.7 MPa. It is compressed t<o 3.4 MPa through a polytropic process whereP「--const. Determine the final temperature treating the carbon dioxide as (a) an ideal gas T2 and (b) a ver der Waals gas.

  • A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air...

    A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air is now compressed slowly according to the relation P Vk = constant, where k = 1.4, until it reaches a final temperature of 77°C. Sketch the P-V diagram of the process with respect to the relevant constant temperature lines, and indicate the work done on this diagram. Using the basic definition of boundary work done determine the boundary work done during the process [-7.18...

  • Problem #4 Carbon dioxide is compressed adiabatically in a piston – cylinder arrangement form 500 kPa...

    Problem #4 Carbon dioxide is compressed adiabatically in a piston – cylinder arrangement form 500 kPa and 310 K to 2.5 MPa. What is the minimum work required for the compression process if the initial volume is 0.04 m3 . Consider carbon dioxide as ideal gas with: a) constant specific heat. b) Variable specific heat.

  • 2. A vessel with a piston cylinder attached to a spring (see Figure 1) contains CO2...

    2. A vessel with a piston cylinder attached to a spring (see Figure 1) contains CO2 with a volume of 500 L, a pressure of 200 kPa and a temperature of 25degree C (State 1). heat is transferred to the vessel and it starts to expand until the piston just touches the stops. The pressure at this state is 400 kPa and the temperature is 500 degree C (State 2). More heat is added to the vessel until the pressure...

  • A piston-cylinder device contains 1.15 kg of air initially at 2441 kPa and 379 oC. The...

    A piston-cylinder device contains 1.15 kg of air initially at 2441 kPa and 379 oC. The air is first expanded isothermally to 470 kPa, then compressed polytropically with a polytropic exponent of 1.7 to the initial pressure, and finally compressed at the constant pressure to the initial state. Determine the net work of the cycle Net work kJ A pistoo-cylinder deuice contains 0.45 kg ofair ity at 2°us kPa and 318 c. The air is first expanded iiethermally to 465kfe,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT