Question

nn is convergent. Deduce that lim (2n)! nn 6. Show that the series = ) (2n)!...

Show that the series \(\sum_{n=1}^{\infty} \frac{n^{n}}{(2 n) !}\) is convergent. Deduce that \(\lim _{n \rightarrow \infty} \frac{n^{n}}{(2 n) !}=0\)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
nn is convergent. Deduce that lim (2n)! nn 6. Show that the series = ) (2n)!...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • If the series

    If the series \(\sum_{n=1}^{\infty} a_{n}\) converges and \(a_{n}>0\) for all \(n\), which of the following must be true?(A) \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0\)(B) \(\left|a_{n}\right|<1\)for all \(n\)(C) \(\sum_{n=1}^{\infty} a_{n}=0\)(D) \(\sum_{n=1}^{\infty} n a_{n}\) diverges.(E) \(\sum_{n=1}^{\infty} \frac{a_{n}}{n}\) converges.

  • Determine whether the series is convergent or divergent.

    Determine whether the series is convergent or divergent.$$ \sum_{n=1}^{\infty}\left(\frac{8}{e^{n}}+\frac{4}{n(n+1)}\right) $$convergentdivergentIf it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

  • find an expression for the area of the region under the graphf(x)=x^4 on the interval...

    find an expression for the area of the region under the graph f(x)=x^4 on the interval [1,7]. use right-Hand endpoints as sample points choices1. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right)^{4} \frac{7}{n}\)2. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{9 i}{n}\right)^{4} \frac{6}{n}\)3. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{6 i}{n}\right)^{4} \frac{6}{n}\)4. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right)^{4} \frac{6}{n}\)5. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{6 i}{n}\right)^{4} \frac{7}{n}\)6. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{9 i}{n}\right)^{4} \frac{7}{n}\)

  • 7. Use the Alternating Series Test to determine the convergence or divergence of the series

    7. Use the Alternating Series Test to determine the convergence or divergence of the series a) \(\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{2 n+1}\)b) \(\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2 n-1}\)8. Use the Ratio Test or the Root Test to determine the convergence or divergence of the seriesa) \(\sum_{n=0}^{\infty}\left(\frac{4 n-1}{5 n+7}\right)^{n}\)b) \(\sum_{n=0}^{\infty} \frac{\pi^{n}}{n !}\)

  • Determine whether the series converges or diverges.

    Determine whether the series converges or diverges.(1) \(\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}\)(2) \(\sum_{n=1}^{\infty}\left(\frac{2}{\sqrt{n}}+\frac{(-1)^{n}}{3^{n+1}}\right)\)(3) \(\sum_{n=1}^{\infty} \frac{5-2 \sin n}{n}\)(4) \(\sum_{n=1}^{\infty} \frac{3+\cos n}{n^{3 / 2}}\)(5) \(\sum_{n=0}^{\infty} \frac{\sqrt{n^{2}+2}}{n^{4}+n^{2}+5}\)(6) \(\sum_{n=1}^{\infty=1}\left(1+\frac{1}{n}\right)^{n}\)(7) \(\sum_{n=1}^{\infty} \frac{n+1}{n 2^{n}}\)(8) \(\sum_{n=1}^{\infty} \frac{\arctan n}{n^{4}}\)(9) \(\sum_{n=1}^{\infty} n \sin \frac{1}{n}\)

  • Determine whether the series converges, and if so, find its sum.

    Determine whether the series converges, and if so, find its sum. (1) \(\sum_{n=1}^{\infty} 3^{-n} 8^{n+1}\)\((2) \sum_{n=2}^{\infty} \frac{1}{n(n-1)}\)(3) \(\sum_{n=0}^{\infty}(-3)\left(\frac{2}{3}\right)^{2 n}\)(4) \(\sum_{n=1}^{\infty} \frac{1}{e^{2 n}}\)(5) \(\sum_{n=1}^{\infty} \ln \frac{n}{n+1}\)(6) \(\sum_{n=1}^{\infty}[\arctan (n+1)-\arctan n]\)(7) \(\sum_{n=1}^{\infty} \ln \left(\frac{n^{2}+4}{2 n^{2}+1}\right)\)(8) \(\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}\)(9) \(\sum_{n=1}^{\infty}\left[\cos \frac{1}{n^{2}}-\cos \frac{1}{(n+1)^{2}}\right]\)

  • (2 points) The area A of the region S that lies under the graph of the...

    (2 points) The area \(A\) of the region \(S\) that lies under the graph of the continuous function \(f\) on the interval \([a, b]\) is the limit of the sum of the areas of approximating rectangles:$$ A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x $$where \(\Delta x=\frac{b-a}{n}\) and \(x_{i}=a+i \Delta x\).The expression$$ A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{8 n} \tan \left(\frac{i \pi}{8 n}\right) $$gives the area of the function \(f(x)=\) on...

  • Determine whether the given series converges or diverges

    Determine whether the given series converges or diverges. Fully justify your answe(a) \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}\)(b) \(\sum_{n=1}^{\infty} \cos \left(\frac{1}{n^{2}}\right)\)(c) \(\sum_{n=1}^{x} \frac{(2 n) !}{5^{n} n ! n t}\)

  • Determine whether the series converges or diverges.

    1. Determine whether the series converges or diverges.$$ \sum_{k=1}^{\infty} \frac{\ln (k)}{k} $$convergesdiverges2.Test the series for convergence or divergence.$$ \sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{3 \pi}{n}\right) $$convergesdiverges

  • Cansider the series

    Cansider the series \(\sum_{n=1}^{\infty} a_{n}\) where$$ a_{n}=\frac{\left(6 n^{2}+2\right)(-7)^{n}}{5^{n+1}} $$In this problem you must attempt to use the Ratio Test to decide whether the series converges.Compute$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.L= _______Which of the following statements is true?A. The Ratio Test says that the series converges absolutely.B. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT