Question

14) Consider the following information: Block 1: 600.g: C =0.200 J/°C g; initial T = ?; Block 2: 400. C=0.600J/°C g; initial
0 0
Add a comment Improve this question Transcribed image text
Answer #1

m(Block 1) = 600.0 g

T(Block 1) = to be calculated

m(Block 2) = 400.0 g

T(Block 2) = 70.0 oC

C(Block 2) = 0.6 J/goC

T = 50.0 oC

We will be using heat conservation equation

use:

heat lost by Block 2 = heat gained by Block 1

m(Block 2)*C(Block 2)*(T(Block 2)-T) = m(Block 1)*C(Block 1)*(T-T(Block 1))

400.0*0.6*(70.0-50.0) = 600.0*0.2*(50.0-T(Block 1))

T(Block 1)= 10 oC

Answer: d

Add a comment
Know the answer?
Add Answer to:
14) Consider the following information: Block 1: 600.g: C =0.200 J/°C g; initial T = ?;...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 10.0 g piece of iron (C = 0.443 J/g oC) initially at 97.6 oC is...

    A 10.0 g piece of iron (C = 0.443 J/g oC) initially at 97.6 oC is placed in 50.0 g of water (C = 4.184 J/g oC) initially at 22.3 oC in an insulated container. The system is then allowed to come to thermal equilibrium. Assuming no heat flow to or from the surroundings, calculate the final temperature of the metal and water the change in entropy for the metal the change in entropy for the water the change in...

  • A 25.Og block of gold (Cs = 0.129 J/g.°C) is heated to 155 °C and then...

    A 25.Og block of gold (Cs = 0.129 J/g.°C) is heated to 155 °C and then placed on top of a 100.0g block of silver (Cs = 0.240 J/g.°C) at 25°C. Assuming that heat is only transferred between the metals (no heat lost to the surroundings) what is the final temperature of the metal blocks after they reach equilibrium?

  • A hot lump of 32.3 g of copper at an initial temperature of 96.5°C is placed...

    A hot lump of 32.3 g of copper at an initial temperature of 96.5°C is placed in 50.0 mL H2O initially at 25.0°C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385J/g°C and the specific heat of water is 4.184J/g°C? 4. A hot lump of 32.3 g of copper at an initial temperature of 96.5°C is placed in 50.0 mL H20 initially at 25.0°C...

  • 3. A 100 g block of copper initially at 60°C is placed in contact with a...

    3. A 100 g block of copper initially at 60°C is placed in contact with a 300 g block of aluminum initially at 30°C in an insulated container. A. Identify the block that loses thermal energy. (5 pts) B. Calculate the final equilibrium temperature of the two blocks. (15 pts) Copper a(Cu) = 17 x 10-61°C Ccu = 0.0923 cal/g.K = 386 J/kg-K LF (Cu) = 207 kJ/kg

  • A hot lump of 35.9 g of aluminum at an initial temperature of 63.3 °C is...

    A hot lump of 35.9 g of aluminum at an initial temperature of 63.3 °C is placed in 50.0 mL H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water, given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.

  • A hot lump of 42.5 g of iron at an initial temperature of 98.4 °C is...

    A hot lump of 42.5 g of iron at an initial temperature of 98.4 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water given that the specific heat of iron is 0.449 J/(g·°C)? Assume no heat is lost to surroundings.

  • A hot lump of 30.9 g of iron at an initial temperature of 86.4 °C is...

    A hot lump of 30.9 g of iron at an initial temperature of 86.4 °C is placed in 50.0 mL H, initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water, given that the specific heat of iron is 0.449 J/(g.°C)? Assume no heat is lost to surroundings.

  • A hot lump of 27.4 g of copper at an initial temperature of 70.3 °C is...

    A hot lump of 27.4 g of copper at an initial temperature of 70.3 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.

  • A hot lump of 30.9 g of copper at an initial temperature of 97.4 °C is...

    A hot lump of 30.9 g of copper at an initial temperature of 97.4 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.

  • A hot lump of 42.0 g of aluminum at an initial temperature of 90.5 °C is...

    A hot lump of 42.0 g of aluminum at an initial temperature of 90.5 °C is placed in 50.0 mL H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water, given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT