Question

Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the slits, causing...

Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the slits, causing an interference pattern on a screen 1.0 m away. Light from each slit travels to the m=1 maximum on the right side of the central maximum. How much farther did the light from the left slit travel than the light from the right slit?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

In a double slit experiment,

Sin theta = lambda/d

path difference = d sin theta = lambda

= 550 *10^-9 m

  

Add a comment
Know the answer?
Add Answer to:
Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the slits, causing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the s...continues

    Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the slits, causing an interference pattern on a screen 1.0 m away. Light from each slittravels to the m=1 maximum on the right side of the central maximum. How much farther did the light from the left slit travel than the light from the right slit?(answer in nm)

  • Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the slits, causing...

    Two narrow slits are 0.12 mm apart. Light of wavelength 550 nm illuminates the slits, causing an interference pattern on a screen 1.0 m away. Light from each slit traveis to the m = 1 maximum on the right side of the centrai maximum. How much farther did the light from the left slit travei than the light from the right slit?

  • A laser of wavelenght 550 nm illuminates two indentical slits, producing an interference pattern on a...

    A laser of wavelenght 550 nm illuminates two indentical slits, producing an interference pattern on a screen 90 cm away from the slits the bright bands are 1 cm apart, and the third bright bands of either side of the central maximum are `missing` in the pattern. A) find the width and the seperation of the slits. b) what is the phase difference for the light arriving at the second interference maximum to the right of the central maximum. c)what...

  • A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How...

    A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How far apart are the bright interference fringes on a screen 5 m away from the double slits? cm 2. (-/10 Points) DETAILS SERCP7 24.P.002. MY NOTES PRACTICE ANOTHER In a Young's double-slit experiment, a set of parallel sits with a separation of 0.050 mm is illuminated by light having a wavelength of 593 nm and the interference pattern observed on a screen 3.50 m...

  • mm. Light of wavelength 590 nm passes through two narrow slits 0.60 mm apart. The screen...

    mm. Light of wavelength 590 nm passes through two narrow slits 0.60 mm apart. The screen is 1.70 m away. (a) Calculate the lateral position of the second order fringe. (b) A second source of unknown wavelength produces its second-order fringe 1.34mm closer to the central maximum than the 590-nm light. What is the wavelength of the unknown light? nm

  • Plane coherent light waves with wavelength 565 nm are incident on two narrow parallel slits positioned...

    Plane coherent light waves with wavelength 565 nm are incident on two narrow parallel slits positioned a distance d = 1 mm apart in a plane parallel to the incoming wavefronts. The interference pattern is observed on a screen parallel to the original wavefronts at 1 m from the two slits. One of the slits is covered on the illuminated side by a glass slide of 0.1 mm thickness with refractive index 1.5. a/ What is the phase difference ∆φ...

  • Assume light of wavelength 650 nm passes through two slits whose centers are 900㎛ apart. The first diffraction min...

    Assume light of wavelength 650 nm passes through two slits whose centers are 900㎛ apart. The first diffraction minima 4 coincides with the missing 7th interference maxima. The screen is 1 m from the slits. What are the slit widths a? a. b. What is the angle to the 2d diffraction minimum Sketch the pattern, up to and including the second diffraction minima on both sides of the central c. maximum Assume light of wavelength 650 nm passes through two...

  • 1) Two narrow slits are 0.25mm apart. They are illuminated by light from a helium–neon laser...

    1) Two narrow slits are 0.25mm apart. They are illuminated by light from a helium–neon laser with a wavelength of 633nm, and the interference pattern is observed on a screen 49cm from the slits. (a) What is the angle between the zero-order maximum and one of the first-order images? (b) What is the distance between the two first-order images? 2) The m=3 maximum is located 3cm from the m=0 image when monochromatic radiation illuminates a double slit. The screen is...

  • Light with a wavelength of 520 nm passes through 0.25 mm slits that are 1.0 mm...

    Light with a wavelength of 520 nm passes through 0.25 mm slits that are 1.0 mm apart. An interference pattern is seen on a screen that is 2.5 m away. How far from the center is the first dark fringe due to the slit width? How far from the center are the bright fringes that fall within this distance?

  • Coherent monochromatic light of wavelength in air is incident on two narrow slits, the centers of...

    Coherent monochromatic light of wavelength in air is incident on two narrow slits, the centers of which are 2.0mm apart, as shown below. The interference pattern observed on a screen 5.0 meters away is represented in the figure by the graph of light intensity I as a function of position x on the screen. 5.0 m 3.0 2.5 Light (wavelength 2) 2.0 1.5 1.0 0.5 2.0 mm 0 05 +-1.0 +-1.5 1-20 1-25 -3.0 Screen Note: Figure not drawn to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT