Question

Suppose that (X1, X2,,,,Xn) are iid random variables. Find the maximum likelihood estimator of theta for...

Suppose that (X1, X2,,,,Xn) are iid random variables. Find the maximum likelihood estimator of theta for the following distributions

1) Poi(theta)

2) N(Mu, theta)

3) Exp(theta)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(1)

The pdf of Poisson distribution is

P(X =x) =-피

Here we have

P(X=x_{1})=rac{e^{- heta} heta^{x_{1}}}{x_{1}!}

PlX =x2) = _.ra!

.

.

.

P(X=x_{n})=rac{e^{- heta} heta^{x_{n}}}{x_{n}!}

So the likelihood function will be

L( heta)=P(X_{1}=x_{1})P(X_{2}=x_{2})...P(X_{n}=x_{n})=e^{-n heta}rac{lambda^{sum_{i=1}^{n}x_{i}}}{prod_{i=1}^{n}x_{i}!}

Taking log of both sides gives

lnleft [L( heta) ight ]=lnleft [e^{-n heta}rac{ heta^{sum_{i=1}^{n}x_{i}}}{prod_{i=1}^{n}x_{i}!} ight ]=-n heta+ sum_{i=1}^{n} x_{i} ln heta- ln left ( prod_{i=1}^{n}x_{i}! ight )

Differentiating both sides gives

rac{d}{d heta}lnleft [L( heta) ight ]=-n+rac{sum_{i=1}^{n}x_{i}}{ heta}

  

Equating this equal to zero gives

-n+rac{sum_{i=1}^{n}x_{i}}{ heta}=0

heta=rac{1}{n} sum_{i=1}^{n}x_{i}

That is required MLE is

ilde{ heta}=rac{1}{n} sum_{i=1}^{n}x_{i}

(2)

The pdf of normal distribution is

f(x) =-1

Let X1, X2, ...Xn is a random sample from the normal distribution. So we have

f(x_{1})=rac{1}{sqrt{2pi heta^{2}}}e^{-rac{(x_{1}-mu)^{2}}{2 heta^{2}}}

f(x_{2})=rac{1}{sqrt{2pi heta^{2}}}e^{-rac{(x_{2}-mu)^{2}}{2 heta^{2}}}

.

.

.

f(x_{n})=rac{1}{sqrt{2pi heta^{2}}}e^{-rac{(x_{n}-mu)^{2}}{2 heta^{2}}}

The likelihood function is

L(mu, heta^{2}:x_{1},x_{2},...,x_{n})=f(x_{1})f(x_{2})...f(x_{n})=left [rac{1}{sqrt{2pi heta^{2}}} ight ]^{n}cdot e^{-rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{2 heta^{2}}}

Taken log of both sides gives

l(mu, heta^{2}:x_{1},x_{2},...,x_{n})=-rac{n}{2}ln(2pi)-rac{n}{2}ln( heta^{2})- rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{2 heta^{2}}

Differentiating above with respect to mu gives

rac{partial }{partial mu}l(mu, heta^{2}:x_{1},x_{2},...,x_{n})=rac{sum_{i=1}^{n}(x_{i}-mu)}{ heta^{2}}

Equating it to zero gives

rac{sum_{i=1}^{n}(x_{i}-mu)}{ heta^{2}}=0

sum_{i=1}^{n}(x_{i}-mu)=0

sum_{i=1}^{n}x_{i}-nmu=0

hat{mu}=rac{1}{n}sum_{i=1}^{n}x_{i}=ar{x}

-------------------------

Differentiating above with respect to sigma gives

rac{partial }{partial heta^{2}}l(mu,sigma^{2}:x_{1},x_{2},...,x_{n})=-rac{n}{2 heta^{2}}+rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{2 heta^{4}}

Equating it to zero gives

-rac{n}{2 heta^{2}}+rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{2 heta^{4}}=0

rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{2 heta^{4}}=rac{n}{2 heta^{2}}

rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{ heta^{2}}=n

heta^{2}=rac{sum_{i=1}^{n}(x_{i}-mu)^{2}}{n}

heta^{2}=rac{1}{n}left [ sum_{i=1}^{n}(x^{2}_{i}+mu^{2}-2mu x_{i}) ight ]=rac{1}{n}left [ sum_{i=1}^{n}x^{2}_{i}+nmu^{2}-2mu sum_{i=1}^{n}x_{i} ight ]=left [rac{1}{n} sum_{i=1}^{n}x^{2}_{i}+mu^{2}-2mu ar{x} ight ]

Putting estimator of my gives

heta^{2}=left [rac{1}{n} sum_{i=1}^{n}x^{2}_{i}+ar{x}^{2}-2ar{x}^{2} ight ]=rac{1}{n} sum_{i=1}^{n}x^{2}_{i}-ar{x}^{2}

So required estimate is

hat{ heta}^{2}=left [rac{1}{n} sum_{i=1}^{n}x^{2}_{i}+ar{x}^{2}-2ar{x}^{2} ight ]=rac{1}{n} sum_{i=1}^{n}x^{2}_{i}-ar{x}^{2}

(3)

From the definition of pdf we have

f(x_{1})=rac{1}{ heta} e^{-x_{1}/ heta}

f(r2)

.

.

.

f(x_{n})=rac{1}{ heta} e^{-x_{n}/ heta}

So the likelihood function will be

-T2 エ1 Taking log of both sides gives

lnleft [L( heta) ight ]=lnleft [rac{1}{ heta^{n}} e^{-(x_{1}+x_{2}+...x_{n})/ heta} ight ]=ln(1)-nln( heta)-rac{sum_{i=1}^{n}x_{i}}{ heta}

Differentiating above with respect to heta gives

rac{d}{d heta}lnleft [L( heta) ight ]=-rac{n}{ heta}+rac{sum_{i=1}^{n}x_{i}}{ heta^{2}}

Equating above to zero gives

-rac{n}{ heta}+rac{sum_{i=1}^{n}x_{i}}{ heta^{2}}=0

heta=rac{sum_{i=1}^{n} x_{i}}{n}=ar{x}

Hence, required estimate is

ilde{ heta}=rac{sum_{i=1}^{n} x_{i}}{n}=ar{x}.

Add a comment
Know the answer?
Add Answer to:
Suppose that (X1, X2,,,,Xn) are iid random variables. Find the maximum likelihood estimator of theta for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT