Question

A sphere of mass mi and a block of mass m2 are connected by a light cord that passes over a pulley, as shown in the figure. T

0 0
Add a comment Improve this question Transcribed image text
Answer #1

At any instant of time the sphere and the block have a common speed v, so the angular moment of the sphere about the pulley axle is  miVR

and block is  mVR

and the angular momentum of the pulley is MR

Now,

the total external torque about the pulley axle is

ET ont dit m. gr - d[ 3 L = mvR+ M₂ V R + MVR - mive & My VR + Iw MIUR + m₂ VR + I (VIR) = v(me me R +/) mige & d [ MR & M2 R

Hence,

the expression of linear acceleration is

a = migR miR+ m2R+

Add a comment
Know the answer?
Add Answer to:
A sphere of mass mi and a block of mass m2 are connected by a light...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m2 = 15.0 kg is connected by a light cord to a mass m1...

    A mass m2 = 15.0 kg is connected by a light cord to a mass m1 = 15.0 kg, which slides on a smooth horizontal surface. The pulley, of mass M = 1.00 kg, rotates about a frictionless axle and has a radius R = 0.200 m and a moment of inertia I = 0.0900 kg-m2 . The cord does not slip on the pulley. a) What is the magnitude of the acceleration of m1? b) What is the tension...

  • A mass (M_1 = 5.0 kg is connected by a light cord to a mass (M_2...

    A mass (M_1 = 5.0 kg is connected by a light cord to a mass (M_2 = 4.0 kg) which slides on a smooth surface, as shown in the figure. The pulley (radius = 0.20 m) rotates about a frictionless axle. The acceleration of M_2 is 3.5 m/s^2. What is the moment of inertia of the pulley?

  • An Atwood's machine consists of two masses, mi and m2, which are connected by a massless...

    An Atwood's machine consists of two masses, mi and m2, which are connected by a massless inelastic cord that passes over a pulley. If the pulley has radius R and moment of inertia I about its axle, determine the acceleration of the masses mi and m2, and compare to the situation in which the moment of inertia of the pulley is ignored. [Hint: The tensions FTI and FT2 are not necessarily equal.] T2

  • A block of mass m2 on a rough, horizontal surface is connected to a ball of...

    A block of mass m2 on a rough, horizontal surface is connected to a ball of mass m1 by a lightweight cord over a lightweight, frictionless pulley as shown in the figure. A force of magnitude F at an angle ?θ with the horizontal is applied to the block as shown, and the block slides to the right. The coefficient of kinetic friction between the block and surface is ??μk. Determine the magnitude of the acceleration of the two objects.

  • An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass

    An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass m2 = 3.00 kg on a frictionless surface (see figure). The pulley rotates about a frictionless axle and has a moment of inertia of 0.570 kg · m² and a radius of 0.310 m. Assume that the cord does not slip on the pulley. (a) Find the acceleration of the two masses. m/s2 (b) Find the tensions T1 and T2

  • A mass m1 is connected by a light string that passes over a pulley of mass...

    A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the acceleration of m1?

  • In the figure, block 1 has mass mi = 430 g, block 2 has mass m2...

    In the figure, block 1 has mass mi = 430 g, block 2 has mass m2 = 520 g, and the pulley is on a frictionless horizontal axle and has radius R = 5.4 cm. When released from rest, block 2 falls 74 cm in 4.9 s without the cord slipping on the pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension 72 (the tension force on the block 2) and (c) tension...

  • Two blocks are connected by a string that passes over a pulley of radius R and...

    Two blocks are connected by a string that passes over a pulley of radius R and moment of Inertia I. The blocks of mass m1 slides on a frictionless, horizontal surface,the block of mass m2 is suspended from the string. Find the acceleration a of the blocks and the Tensions T1 and T2 assuming the string does not slip on the pulley.

  • Mass m1 = 5.80 kg is connected to mass m2 = 3.50 kg by a light...

    Mass m1 = 5.80 kg is connected to mass m2 = 3.50 kg by a light string that passes over a frictionless pulley. The pulley has a moment of inertia of 0.490 kg · m2 and a radius of 0.280 m. Mass m2 sits on a frictionless horizontal surface. The string does not slip while in motion on the pulley. Find the tension force T1 on mass m1 in N

  • 7. A mass (mı) is connected by a light string that passes over a pulley of...

    7. A mass (mı) is connected by a light string that passes over a pulley of mass (m3) to a mass (m2) as shown in the figure. There is no slippage between the string and the pulley. The coefficient of kinetic friction between the mass (mi) and the horizontal surface is 0.25. The inclined surface is frictionless and makes an angle of 30.0° with the horizontal. The moment of inertia of the pulley is 1m3r2. What is the magnitude of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT