Question

Q3. In a two dimensional 4 points completely inelastic collision two objects of the same mass and same initial speed collides
0 0
Add a comment Improve this question Transcribed image text
Answer #1

momentum conservation in x-direction mucosa + Mucoso = 2 x N Veeso + loso + coso - 1 - 0 direction Autos mo sind - my sino s

Add a comment
Know the answer?
Add Answer to:
Q3. In a two dimensional 4 points completely inelastic collision two objects of the same mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • After a completely inelastic collision, two objects of the same mass and same initial speed are...

    After a completely inelastic collision, two objects of the same mass and same initial speed are found to move away together at 1/5 their initial speed. Find the angle between the initial velocities of the objects. PLEASE WORK OUT. THANKS.

  • One object is at rest, and another is moving. The two collide in a one-dimensional, completely...

    One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 29 m/s. The masses of the two objects are 3.4 and 7.7 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...

  • One object is at rest, and another is moving. The two collide in a one-dimensional, completely...

    One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 24 m/s. The masses of the two objects are 2.9 and 7.9 kg Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...

  • 3 Block Inelastic collision

    A block of massm1 = 1.30kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg . The blocks then move, stuck together,at speed . After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60kg , which is initially at rest. The three blocksthen move, stuck together, with speed v3 . Assume that the blocks slide without friction.Find v1/v2, the ratio of the...

  • A block of mass m1 = 1.60kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg

    A block of mass m1 = 1.60kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of massm3 = 2.70kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without friction.Part AFind v2v1, the...

  • EXAMPLE 6.8 Collision at an Intersection GOAL Analyze a two-dimensional inelastic collision. 25.0 m/s +20,0 m/s...

    EXAMPLE 6.8 Collision at an Intersection GOAL Analyze a two-dimensional inelastic collision. 25.0 m/s +20,0 m/s A top view of a perfectly inelastic collision between a car and a van. PROBLEM A car with mass 1.50 x 103 kg traveling east at a spegd of 25.0 m/s collides at an intersection with a 2.50 x 10 kg van traveling north at a speed of 20.0 m/s, as shown in the figure. Find the magnitude and direction of the velocity of...

  • One object is moving and one object is at rest. The two objects then collide in...

    One object is moving and one object is at rest. The two objects then collide in a dimensional, completely inelastic collision. So the two objects stick together after the collision and move off with a common velocity. Momentum of the two-object system is conserved. The masses of the two objects are 5.00 kg and 8.50 kg, respectively. The speed of the moving object masses 5.00 kg before the collision is 22.5 m/sec. Find the final speed of the two-object system...

  • . Two objects of the same mass move along the same line in opposite directions. The...

    . Two objects of the same mass move along the same line in opposite directions. The first mass is moving with speed v. The objects collide, stick together, and move with speed 0.100v in the direction of the velocity of the first mass before the collision. 1.How much kinetic energy is lost during the collision?

  • Two particles of mass m1 = 2.0 kg and m2 = 2.6 kg undergo a one-dimensional...

    Two particles of mass m1 = 2.0 kg and m2 = 2.6 kg undergo a one-dimensional head-on collision as shown in the figure below. Their initial velocities along x are vii = 15 m/s and v2,--6.8 m/s. The two particles stick together after the collision (a completely inelastic collision. (Assume to the right as the positive direction.) mi m2 (a) Find the velocity after the collision. 2.6782 m/s (b) How much kinetic energy is lost in the collision? 153.907x

  • help For the perfectly inelastic collision shown in the figure below, the two meteoroids collide Find...

    help For the perfectly inelastic collision shown in the figure below, the two meteoroids collide Find the x- and y-components of each of the initial velocities. Use momentum conservation to determine the magnitude vf and direction 6 of the final velocity of the debris as they move off together.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT