Question
please help
Resources Give Up? Efendi Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10 km above the Earths sur
0 0
Add a comment Improve this question Transcribed image text
Answer #1

workdone needed to make satellite reach the Geosynchronous orbit

W = kE at that orbit + gravitational k

potential energy

W = 0.5 m vo^2 - GMm / ( R+h).... (i)

as we know orbital velocity

vo^2 = GM / (R + h)

putting in (i)

W = 0.5 m GM / (R +h) - GM m /( R +h)

W = - 0.5 GMm/(R+h)

W = - 0.5*6.67* 10^-11* 5.97* 10^24* 455/ ( 6.37* 10^6 + 3.06* 10^7)

W = - 2.45* 10^9 J

========

Comment before rate in case any doubt, will reply for sure.. goodluck

Add a comment
Know the answer?
Add Answer to:
please help Resources Give Up? Efendi Consider a 455 kg satellite in a circular orbit at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10...

    Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 X 10 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Re = 6,37 x 10 km and Me = 5.97 x 10 kg,...

  • Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104...

    Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Re = 6.37 % 10% km and Me = 5.97 x 1024 kg,...

  • Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104...

    Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 107 km above the Earth's surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 109 km and Me = 5.97 x 1024 kg,...

  • Consider a 475 kg satellite in a circular orbit at a distance of 3.06 x 104...

    Consider a 475 kg satellite in a circular orbit at a distance of 3.06 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth's surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 109 km and Me = 5.97 x 1024 kg,...

  • Question 1 of 10 > Attempt 2 - Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10 km abov...

    Question 1 of 10 > Attempt 2 - Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit Geosynchronous orbits occur at approximately 3.60 x 10 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Rę = 6.37 x 10...

  • Consider a 495 kg satellite in a circular orbit at a distance of 3.02 x 104...

    Consider a 495 kg satellite in a circular orbit at a distance of 3.02 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth's surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and Me = 5.97 x 1024 kg,...

  • Question 1 of 10 > Attempt2 Consider a 495 kg satellite in a circular orbit at...

    Question 1 of 10 > Attempt2 Consider a 495 kg satellite in a circular orbit at a distance of 3.07 x 10 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur approximately 3.60 x 10 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Re -6.37 x 10 km and Mg =...

  • Question 1 of 10 > Attempt 4 Consider a 495 kg satellite in a circular orbit...

    Question 1 of 10 > Attempt 4 Consider a 495 kg satellite in a circular orbit at a distance of 3.07 x 10 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 10 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Re = 6,37 x 10 km...

  • Consider a 435 satellite in a circular orbit at a distance of 3.19X10^4 above the Earth’s...

    Consider a 435 satellite in a circular orbit at a distance of 3.19X10^4 above the Earth’s surface. What is the minimum amount of work W the satellite’s thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.6X10^4 above the Earth’s surface. The radius of the Earth and the mass of the Earth are RE=6.37X10^3 and 5.97X10^24 respectively. The gravitational constant is G = 6.67X10^-11 Assume the change in mass of the satellite is...

  • A satellite of mass 42.5 kg in geosynchronous orbit at an altitude of 3.58 ✕ 104...

    A satellite of mass 42.5 kg in geosynchronous orbit at an altitude of 3.58 ✕ 104 km above the Earth's surface remains above the same spot on the Earth. Assume its orbit is circular. Find the magnitude of the gravitational force exerted by the Earth on the satellite. Hint: The answer is not 417 N

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT