Question

A uniform metal pole of mass 20.0 kg and length 5.00 m is bolted horizontally to a vertical wall. A cable is tied at the far

0 0
Add a comment Improve this question Transcribed image text
Answer #1

T SiO) (13) mg 53: A--- cos(530) = > re 2 La cos(53) Torque about bolted For equilibrium of pole, net boint should be zess. t

Add a comment
Know the answer?
Add Answer to:
A uniform metal pole of mass 20.0 kg and length 5.00 m is bolted horizontally to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a sign of mass 20.0 kg is supported at the end of a uniform beam of...

    a sign of mass 20.0 kg is supported at the end of a uniform beam of mass 10.0 kg and length 2.00!m. the beam makes an angle of 30.0 degrees with the horizontal. a wire is attached from the end of the rod to a point on the wall and makes an angle if 20.0 degrees to the horizontal. what is the tension of the wire. what are the magnitudes of the horizontal and vertical components of the reaction force...

  • help 5. A uniform beam of mass M-250 kg and length / 10.0 m is mounted...

    help 5. A uniform beam of mass M-250 kg and length / 10.0 m is mounted to a wall by a strong hinge and a cable, as shown. A steel block of mass m 685 kg is placed on the beam a distancex 2.5 m from the hinge. The cable is at an angle 6 400, as shown. 6/ a. Calculate the tension in the cable. b. Calculate the horizontal component of the force the hinge exerts on the beam....

  • 3) A uniform horizontal beam of length 12.0 m and a mass of 20 kg is...

    3) A uniform horizontal beam of length 12.0 m and a mass of 20 kg is attached to a wall. Its far end is suspended by a cable that makes an angle of 63 degrees with the beam. A person of mass 72 kg stands a distance d = 4.0 m from the wall. Find the tension in the cable as well as the magnitude and direction of the force exerted by the wall on the beam.

  • 5. A uniform beam of mass M- 250 kg and length l- 10.0 m is mounted...

    5. A uniform beam of mass M- 250 kg and length l- 10.0 m is mounted to a wall by a strong hinge and a cable, as shown. A steel block of mass m = 685 kg is placed on the beam a distance x-2.5 m from the hinge. The cable is at an angle -40°, as shown. a. b. c. d. Calculate the tension in the cable. Calculate the horizontal component of the force the hinge exerts on the...

  • A uniform beam of length 10.0 m and mass 50.0 kg is attached to a wall...

    A uniform beam of length 10.0 m and mass 50.0 kg is attached to a wall at one end and free to pivot at this point. The beam is held horizontal by a cable attached to the far end of the beam and to a point on the wall 5.77 m above the pivot point. The angle between the beam and the cable is 30 degrees. A. What is the tension in the cable? B. What force is exerted by...

  • The figure shows a uniform, horizontal beam (length = 10.0 m, mass = 30.0 kg) that...

    The figure shows a uniform, horizontal beam (length = 10.0 m, mass = 30.0 kg) that is held by a horizontal pin (pivoted at the wall), with its far end supported by a cable that makes an angle of 51 degree with the horizontal. A person of mass M stands 3.00 magnitude of 454 N. (a) Calculate the mass M of the person standing on the beam? (b) What are the horizontal and vertical components of the force the pin...

  • o. (15 points total) A uniform beam of length 3.00 m and mass 25.0 kg is...

    o. (15 points total) A uniform beam of length 3.00 m and mass 25.0 kg is fixed to a wall by a hinge. A cable is attached to the end of a beam and to a point on a wall making an angle of 28.0° with the horizontal. A 50.0-kg mass is suspended from the beam at a point 2.10 m from the wall (8 points) What is the tension in the cable? a. 50-kg (7 points) What are the...

  • 12. (20 points total) A uniform beam of length 3.00 m and mass 25.0 kg is...

    12. (20 points total) A uniform beam of length 3.00 m and mass 25.0 kg is fixed to a wall by a hinge. A cable is attached to the end of a beam and to a point on a wall making an angle of 28.0° with the horizontal. A 50.0-kg mass is suspended from the beam at a point 2.10 m from the wall. a. (10 points) What is the tension in the cable? 50-kg b. (10 points) What are...

  • A 15 kg uniform beam, 2 m in length, is supported at it's end by a...

    A 15 kg uniform beam, 2 m in length, is supported at it's end by a cable as shown below. The angle between the cable and the horizontal is 45 degrees. 2. Cable Beam Find the horizontal and vertical components of the force from the hinge (left end of the beam) acting on the beam a. b. If the tension in the cord exceeds 115N, the cord will break. Will placing a 5 kg mass at the right end of...

  • A 12.0 m uniform beam is hinged to a vertical wall and held horizontally by a...

    A 12.0 m uniform beam is hinged to a vertical wall and held horizontally by a 5.00 m cable attached to the wall 4.00 m above the hinge, as shown in the figure below (Figure 1).The metal of this cable has a test strength of 0.900 kN which means that it will break if the tension in it exceeds that amount. You may want to review For related problem solving tips and strategies, you may want to view a Video...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT