Question

Calculate the magnitude and direction of the Coulomb force on each of the three charges shown...

Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in the figure below.
6.00 µC charge:
magnitude


Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N
direction


1.50 µC charge:
magnitude N
direction

-2.00 µC charge:
magnitude N
direction



(6)------(1.5)-------(-2)
<---3cm--><----2cm-->
0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

The concepts required to solve the given question is electrostatic force.

Initially, write an expression for the electrostatic forces between two charges and calculate the net force on the 6.00μC6.00{\rm{ }}\mu {\rm{C}} charge. Later, calculate the net force on the 15μC15{\rm{ }}\mu {\rm{C}} charge. Finally, calculate the force of attraction between 2.00μC - 2.00{\rm{ }}\mu {\rm{C}} and 15.0μC15.0{\rm{ }}\mu {\rm{C}} charges.

Fundamentals

The expression for the electrostatic force is as follows:

F=qq4πε0r2F = \frac{{qq'}}{{4\pi {\varepsilon _0}{r^2}}}

Here, q and q’ are the magnitude of the charges, r is the distance between the charges, and ε0{\varepsilon _0} is the permittivity of free space.

Assume F1{F_1} be the force acting on the 6.00μC6.00{\rm{ }}\mu {\rm{C}} charge along the negative x axis and F2{F_2} be the force along the positive x axis between the 6.00μC6.00{\rm{ }}\mu {\rm{C}} and 2.00μC - 2.00{\rm{ }}\mu {\rm{C}}.

Thus, the net force on the 6.00μC6.00{\rm{ }}\mu {\rm{C}} charge is as follows:

Fnet=F1+F2{F_{{\rm{net}}}} = - {F_1} + {F_2}

Substitute qq4πε0r2\frac{{qq'}}{{4\pi {\varepsilon _0}{r^2}}} for F1{F_1} and F2{F_2} in the equation Fnet=F1+F2{F_{{\rm{net}}}} = - {F_1} + {F_2}.

Fnet=q1q14πε0r12+q2q24πε0r22{F_{{\rm{net}}}} = - \frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}

Substitute 9×109Nm2C29 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}} for 14πε0\frac{1}{{4\pi {\varepsilon _0}}}, 6.00μC6.00{\rm{ }}\mu {\rm{C}} for q1{q_1} and q2{q_2}, 1.50μC1.50{\rm{ }}\mu {\rm{C}} for q1{q_1}' and 2.00μC2.00{\rm{ }}\mu {\rm{C}} for q2{q_2}, 3.00 cm for r1{r_1}, and 5.00 cm for r2{r_2} in the equation Fnet=q1q14πε0r12+q2q24πε0r22{F_{{\rm{net}}}} = - \frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}

Fnet=q1q14πε0r12+q2q24πε0r22=9×109Nm2C2((6.00μC)1.50μC(3.00cm)2+(6.00μC)(2.00μC)(5.00cm)2)=9×109Nm2C2((6.00μC)(1.50μC)(3.00cm)2(102m1.00cm)2+(6.00μC)(2.00μC)(5.00cm)2(102m1.00cm)2)(106C1.00μC)2=46.8N\begin{array}{c}\\{F_{{\rm{net}}}} = - \frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}\\\\ = 9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}\left( { - \frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)1.50{\rm{ }}\mu {\rm{C}}}}{{{{\left( {3.00{\rm{ cm}}} \right)}^2}}} + \frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {5.00{\rm{ cm}}} \right)}^2}}}} \right)\\\\ = 9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}\left( { - \frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)\left( {1.50{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {3.00{\rm{ cm}}} \right)}^2}{{\left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1.00{\rm{ cm}}}}} \right)}^2}}} + \frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {5.00{\rm{ cm}}} \right)}^2}{{\left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1.00{\rm{ cm}}}}} \right)}^2}}}} \right){\left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1.00{\rm{ }}\mu {\rm{C}}}}} \right)^2}\\\\ = - 46.8{\rm{ N}}\\\end{array}

The net force on the 1.50μC1.50{\rm{ }}\mu {\rm{C}} charge is as follows:

Fnet=F1+F2{F_{{\rm{net}}}} = {F_1} + {F_2}

Substitute qq4πε0r2\frac{{qq'}}{{4\pi {\varepsilon _0}{r^2}}} for F1{F_1} and F2{F_2} in the equation Fnet=F1+F2{F_{{\rm{net}}}} = {F_1} + {F_2}.

Fnet=q1q14πε0r12+q2q24πε0r22{F_{{\rm{net}}}} = - \frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}

Substitute 9×109Nm2C29 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}} for 14πε0\frac{1}{{4\pi {\varepsilon _0}}}, 6.00μC6.00{\rm{ }}\mu {\rm{C}} for q1{q_1}, 1.50μC1.50{\rm{ }}\mu {\rm{C}} for q1{q_1}' and q2{q_2}', 3.00 cm for r1{r_1}, 2.00μC2.00{\rm{ }}\mu {\rm{C}} for q2{q_2} , and 2.00 cm for r2{r_2} in the equation Fnet=q1q14πε0r12+q2q24πε0r22{F_{{\rm{net}}}} = - \frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}.

Fnet=q1q14πε0r12+q2q24πε0r22=(9×109Nm2C2)((6.00μC)1.50μC(3.00cm)2+(2.00μC)1.50μC(2.00cm)2)=(9×109Nm2C2)((6.00μC)(1.50μC)(3.00cm)2(102m1.00cm)2+(2.00μC)(1.50μC)(2.00cm)2(102m1.00cm)2)(106C1.00μC)2=157.5N\begin{array}{c}\\{F_{{\rm{net}}}} = \frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}\\\\ = \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {\frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)1.50{\rm{ }}\mu {\rm{C}}}}{{{{\left( {3.00{\rm{ cm}}} \right)}^2}}} + \frac{{\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)1.50{\rm{ }}\mu {\rm{C}}}}{{{{\left( {2.00{\rm{ cm}}} \right)}^2}}}} \right)\\\\ = \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {\frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)\left( {1.50{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {3.00{\rm{ cm}}} \right)}^2}{{\left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1.00{\rm{ cm}}}}} \right)}^2}}} + \frac{{\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)\left( {1.50{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {2.00{\rm{ cm}}} \right)}^2}{{\left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1.00{\rm{ cm}}}}} \right)}^2}}}} \right){\left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1.00{\rm{ }}\mu {\rm{C}}}}} \right)^2}\\\\ = 157.5{\rm{ N}}\\\end{array}

Assume F1{F_1} be the force of attraction acting on the 2.00μC - 2.00{\rm{ }}\mu {\rm{C}} charge due to 6.00μC6.00{\rm{ }}\mu {\rm{C}}along the negative x axis and F2{F_2} be the force of attraction between 2.00μC - 2.00{\rm{ }}\mu {\rm{C}} and 1.50μC1.50{\rm{ }}\mu {\rm{C}}charges along the negative x axis.

Thus, the net force is as follows:

Fnet=F1F2{F_{{\rm{net}}}} = - {F_1} - {F_2}

Substitute qq4πε0r2\frac{{qq'}}{{4\pi {\varepsilon _0}{r^2}}} for F1{F_1} and F2{F_2} in the equation Fnet=F1+F2{F_{{\rm{net}}}} = {F_1} + {F_2}.

Fnet=(q1q14πε0r12+q2q24πε0r22){F_{{\rm{net}}}} = - \left( {\frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}} \right)

Substitute 9×109Nm2C29 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}} for 14πε0\frac{1}{{4\pi {\varepsilon _0}}}, 6.00μC6.00{\rm{ }}\mu {\rm{C}} for q1{q_1}, 2.00μC{\rm{2}}{\rm{.00 }}\mu {\rm{C}} for q1{q_1}' and q2{q_2}', 5.00 cm for r1{r_1}, 1.50μC{\rm{1}}{\rm{.50 }}\mu {\rm{C}} for q2{q_2} , and 2.00 cm for r2{r_2} in the equation Fnet=(q1q14πε0r12+q2q24πε0r22){F_{{\rm{net}}}} = - \left( {\frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}} \right).

Fnet=(q1q14πε0r12+q2q24πε0r22)=(9×109Nm2C2)((6.00μC)(2.00μC)(5.00cm)2+(2.00μC)(1.50μC)(2.00cm)2)=(9×109Nm2C2)((6.00μC)(2.00μC)(5.00cm)2(102m1.00cm)2+(2.00μC)(1.50μC)(2.00cm)2(102m1.00cm)2)(106C1.00μC)2=110.7N\begin{array}{c}\\{F_{{\rm{net}}}} = - \left( {\frac{{{q_1}{q_1}'}}{{4\pi {\varepsilon _0}{r_1}^2}} + \frac{{{q_2}{q_2}'}}{{4\pi {\varepsilon _0}{r_2}^2}}} \right)\\\\ = - \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {\frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {5.00{\rm{ cm}}} \right)}^2}}} + \frac{{\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)\left( {1.50{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {2.00{\rm{ cm}}} \right)}^2}}}} \right)\\\\ = - \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {\frac{{\left( {6.00{\rm{ }}\mu {\rm{C}}} \right)\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {5.00{\rm{ cm}}} \right)}^2}{{\left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1.00{\rm{ cm}}}}} \right)}^2}}} + \frac{{\left( {2.00{\rm{ }}\mu {\rm{C}}} \right)\left( {1.50{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left( {2.00{\rm{ cm}}} \right)}^2}{{\left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1.00{\rm{ cm}}}}} \right)}^2}}}} \right){\left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1.00{\rm{ }}\mu {\rm{C}}}}} \right)^2}\\\\ = - 110.7{\rm{ N}}\\\end{array}

Ans:

The magnitude of the force is equal to 46.8 N and is directed in the negative x direction.

The magnitude of the force is equal to 157.5 N and is directed in the positive x direction.

The magnitude of the force is equal to 110.7 N and is directed in the negative x direction.

Add a comment
Know the answer?
Add Answer to:
Calculate the magnitude and direction of the Coulomb force on each of the three charges shown...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Calculate the magnitude and direction of the Coulomb force on each of the three charges shown...

    Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in the figure below. Three charges lie along a horizontal line. A 6.00 µC positive charge is on the left. 3.00 cm to its right is a 1.50 µC positive charge. 2.00 cm to the right of the 1.50 µC charge is a −2.00 µCcharge. 6.00 µC charge     magnitude     6.00 µC charge     direction     1.50 µC charge     magnitude     1.50 µC charge     direction     −2.00 µC charge    ...

  • Calculate the magnitude and direction of the Coulomb force on each of the three charges shown...

    Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in the figure below. 6.00 μC 1.50 ,C -2.00 μC 3.00 cm 2.00 cm 6.00 HC charge magnitude 6.00 HC charge direction select B 1.50 HC charge magnitude 1.50 uC charge direction elect. -2.00 HC charge magnitude 2.00 HC charge direction Need Help? Read It 5 -Select--

  • (a) Determine the electric field strength at a point 1.00 cm to the left of the...

    (a) Determine the electric field strength at a point 1.00 cm to the left of the middle charge shown in the figure below. (Enter the magnitude of the electric field only.) 3e7 Your response differs from the correct answer by more than 10%. Double check your calculations, NC 6.00 С 1.50 μC ,-2.00 μC 3.00 cm2 2.00 cm (b) If a charge of-3.21 C is placed at this point, what are the magnitude and direction of the force on it?...

  • (a) Determine the electric field strength at a point 1.00 cm to the left of the...

    (a) Determine the electric field strength at a point 1.00 cm to the left of the middle charge shown in the figure below. (Enter the magnitude of the electric field only.) 6.00 μο: 1.50 μC -2.00 pc 8.00 cm2 2.00 cm 2e13 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N/C (b) If a charge of-6.09 μC is placed at this point, what are the magnitude and direction of...

  • Three charges are at the corners of an equilateral triangle, as shown in the figure below....

    Three charges are at the corners of an equilateral triangle, as shown in the figure below. Calculate the electric field at a point midway between the two charges on the x-axis. (Let 91 = 9.00 uc, 92 = 6.00 uc, and 93 = -3.00 uC.) 0.500 m 60.00 magnitude 1.85e12 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N/C 18.5 ✓ below the +x-axis direction

  • Co) Three pont charges, A 1.e6o u, 6.30 C, and c-460 C, are located st the...

    Co) Three pont charges, A 1.e6o u, 6.30 C, and c-460 C, are located st the comers of an equilteral tiangle as in the figure above. Find the magnitude and direction of the electric field at the position of the 1.60 JC charge magnitude direction 0.7948 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N/C (counterclockwise from the x-axis) if the charae there were doubled?

  • Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in the figure below.

    Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in the figure below. 

  • The figure below shows four identical conducting spheres with charge q-+6.00 nC placed at the corners...

    The figure below shows four identical conducting spheres with charge q-+6.00 nC placed at the corners of a rectangle of width w 28.0 cm and height h - 50.0 cm. What are the magnitude and direction of the net electrostatic force on the charge on the lower right-hand comer? magnitude directiorn Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (counterclockwise from the +x axis) Need Help? Re

  • 0.500 m (a) Three point charges, A 1.60 uc, B -6.90 uC, and c-.4.60 uc, are...

    0.500 m (a) Three point charges, A 1.60 uc, B -6.90 uC, and c-.4.60 uc, are located at the corners of an equilateral triangle as in the figure above. Find the magnitude and erection of the at the corners of an "lectric neld at the position of the i. 60 İC charge. 0.36 magnitude Your response differs significantly from the correct anwwer Rework your solution from the beginning and check each step carefully N/C 79.1 direction Your response diners from...

  • Particle A of charge 6.00 times 10^-4 C is at the origin, particle B of charge...

    Particle A of charge 6.00 times 10^-4 C is at the origin, particle B of charge -9.00 times 10^4 C is at (6.00 m, o) and particle C of charge 3.00 times 10^4 C is at (0, 2.00 m) What is the X-component of the electric force exerted by A on C? 0 What is the y component of the force exerted by A on C? 405 N Find the magnitude of the force exerted by B on C. 60.8...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT