Question

Three charges are arranged as shown in the figure below. Find the magnitude and direction of...

Three charges are arranged as shown in the figure below. Find the magnitude and direction of the electrostatic force on the charge q = 4.86 nC at the origin. (Let r12 = 0.285 m.)
uploaded image


0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

The concepts required to solve the given question is Coulomb’s law.

Initially, calculate the magnitude of the force in the horizontal and the vertical direction. Later, calculate the magnitude of net force by taking the resultant of two forces in the x and y direction. Finally, calculate the direction of force.

Fundamentals

The expression for the electrostatic force in the horizontal direction is as follows:

Fx=q1q24πε0r2{F_{\rm{x}}} = \frac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}}

Here, q and q’ are the magnitude of the charges, r is the distance between the charges, and ε0{\varepsilon _0} is the permittivity of free space.

The expression for the electrostatic force in the vertical direction is as follows:

Fy=q1q24πε0r2{F_{\rm{y}}} = \frac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}}

The magnitude of the net force is as follows:

F=Fx2+Fy2F = \sqrt {F_{\rm{x}}^2 + F_{\rm{y}}^2}

The expression for the calculation of the direction is as follows:

θ=180+tan1(FyFx)\theta = 180^\circ + {\tan ^{ - 1}}\left( {\frac{{{F_{\rm{y}}}}}{{{F_{\rm{x}}}}}} \right)

Substitute 9×109Nm2C29 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}} for 14πε0\frac{1}{{4\pi {\varepsilon _0}}}, 4.86nC4.86{\rm{ nC}} for q1{q_1}, 6.00nC{\rm{6}}{\rm{.00 nC}}for q2{q_2}, and 0.285 m for r in the equation Fx=q1q24πε0r2{F_{\rm{x}}} = \frac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}} to calculate the horizontal component of the force.

Fx=(9×109Nm2C2)(4.86nC)(6.00nC)(0.285m)2(i^)=(9×109Nm2C2)(4.86nC)(109C1.00nC)(6.00nC)(109C1.00nC)(0.285m)2(i^)=3.23×106(i^)N\begin{array}{c}\\{F_{\rm{x}}} = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {4.86{\rm{ nC}}} \right)\left( {{\rm{6}}{\rm{.00 nC}}} \right)}}{{{{\left( {0.285{\rm{ m}}} \right)}^2}}}\left( { - \hat i} \right)\\\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {4.86{\rm{ nC}}} \right)\left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1.00{\rm{ nC}}}}} \right)\left( {{\rm{6}}{\rm{.00 nC}}} \right)\left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1.00{\rm{ nC}}}}} \right)}}{{{{\left( {0.285{\rm{ m}}} \right)}^2}}}\left( { - \hat i} \right)\\\\ = - 3.23 \times {10^{ - 6}}\left( {\hat i} \right){\rm{ N}}\\\end{array}

Substitute 9×109Nm2C29 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}} for 14πε0\frac{1}{{4\pi {\varepsilon _0}}}, 4.86nC4.86{\rm{ nC}} for q1{q_1}, 3.00nC{\rm{3}}{\rm{.00 nC}}for q2{q_2}, and 0.100 m for r in the equation Fy=q1q24πε0r2{F_{\rm{y}}} = \frac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}} to calculate the vertical component of the force.

Fy=(9×109Nm2C2)(4.86nC)(6.00nC)(0.285m)2(i^)=(9×109Nm2C2)(4.86nC)(109C1.00nC)(3.00nC)(109C1.00nC)(0.100m)2(i^)=1.31×105(j^)N\begin{array}{c}\\{F_{\rm{y}}} = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {4.86{\rm{ nC}}} \right)\left( {{\rm{6}}{\rm{.00 nC}}} \right)}}{{{{\left( {0.285{\rm{ m}}} \right)}^2}}}\left( { - \hat i} \right)\\\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2} \cdot {{\rm{C}}^{ - 2}}} \right)\left( {4.86{\rm{ nC}}} \right)\left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1.00{\rm{ nC}}}}} \right)\left( {{\rm{3}}{\rm{.00 nC}}} \right)\left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1.00{\rm{ nC}}}}} \right)}}{{{{\left( {0.100{\rm{ m}}} \right)}^2}}}\left( { - \hat i} \right)\\\\ = - 1.31 \times {10^{ - 5}}\left( {\hat j} \right){\rm{ N}}\\\end{array}

Thus, the magnitude of the net force is obtained by substituting 3.23×106N - 3.23 \times {10^{ - 6}}{\rm{ N}} for Fx{F_{\rm{x}}} and 1.31×105N - 1.31 \times {10^{ - 5}}{\rm{ N}} for Fy{F_{\rm{y}}} in the equation F=Fx2+Fy2F = \sqrt {F_{\rm{x}}^2 + F_{\rm{y}}^2} .

F=(3.23×106N)2+(1.31×105N)2=1.35×105N\begin{array}{c}\\F = \sqrt {{{\left( { - 3.23 \times {{10}^{ - 6}}{\rm{ N}}} \right)}^2} + {{\left( { - 1.31 \times {{10}^{ - 5}}{\rm{ N}}} \right)}^2}} \\\\ = 1.35 \times {10^{ - 5}}{\rm{ N}}\\\end{array}

Substitute3.23×106N - 3.23 \times {10^{ - 6}}{\rm{ N}} for Fx{F_{\rm{x}}} and 1.31×105N - 1.31 \times {10^{ - 5}}{\rm{ N}} for Fy{F_{\rm{y}}} in the equation θ=180+tan1(FyFx)\theta = 180^\circ + {\tan ^{ - 1}}\left( {\frac{{{F_{\rm{y}}}}}{{{F_{\rm{x}}}}}} \right).

θ=180+tan1(1.31×105N3.23×106N)=180+tan1(4.055)=180+76.1=256.1\begin{array}{c}\\\theta = 180^\circ + {\tan ^{ - 1}}\left( {\frac{{ - 1.31 \times {{10}^{ - 5}}{\rm{ N}}}}{{ - 3.23 \times {{10}^{ - 6}}{\rm{ N}}}}} \right)\\\\ = 180^\circ + {\tan ^{ - 1}}\left( {4.055} \right)\\\\ = 180^\circ + 76.1^\circ \\\\ = 256.1^\circ \\\end{array}

Ans:

The magnitude of the force is equal to 1.35×105N1.35 \times {10^{ - 5}}{\rm{ N}} and the direction of the force is equal to 256.1256.1^\circ .

Add a comment
Know the answer?
Add Answer to:
Three charges are arranged as shown in the figure below. Find the magnitude and direction of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT