Question

The ideal gas law gives the following formula governing the number of moles of a gas in terms of temperature, pressure, and volume: PV n(T, V, P) = 8.31 . T (a) Find the differential dn of n(T, V, P). (b) You use the ideal gas law to count the number of moles of helium gas in a chamber by measuring pressure, volume and temperature (because, you know, gas is invisible). You make measurements, with the following known possible errors coming from the precision of your instruments: V 110-6)m3,P (10° 3)Pa, and T-(250+0.1) K. Use the differential dn found in the previous item to estimate the maximal error in your measurement of the number of moles

0 0
Add a comment Improve this question Transcribed image text
Answer #1

PV 8.31 T asthudasう 48.135 meća Takima di

please rate it up thanks :)

Add a comment
Know the answer?
Add Answer to:
The ideal gas law gives the following formula governing the number of moles of a gas...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please answer all parts of the question: a,b,c,d Ideal Gas Law The ideal gas law states...

    Please answer all parts of the question: a,b,c,d Ideal Gas Law The ideal gas law states that PV = Nk T where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the gas, and T is its absolute temperature. The constant kg is called the Boltzmann constant and has the value kg = 1.38x10-29 J/K. A very common expression of the ideal gas law uses the...

  • One way to write the ideal gas law is PV = nRT where P is the...

    One way to write the ideal gas law is PV = nRT where P is the pressure, V is the volume, n is the number of moles, R is the universal gas law constant and T is the temperature. Solve the ideal gas law for T.

  • Combined Gas Relationship Since the Ideal Gas Law produces a constant (R), it can be used...

    Combined Gas Relationship Since the Ideal Gas Law produces a constant (R), it can be used to look at a gas sample in which initial and final conditions have changed. The combined gas relationship is as follows P.V R=P.V2 n, T n2 T2 where P, Vi,and T, and n, are the initial pressure, volume, temperature, and number of moles of gas. The final conditions are represented by P, V2, T2 and n2. If any of the conditions in the initial...

  • Problem 1: Ideal Gas Law Problem 1. The ideal gas law states PV nRT where P,...

    Problem 1: Ideal Gas Law Problem 1. The ideal gas law states PV nRT where P, V, and T are the pressure, volume and absolute temperature; n is the number of moles of gas; and R is the the ideal gas constant. Consider a 1-gallon canister of gas at a pressure of 1 atm. Answer the following questions: 1. How much energy would be needed to increase the pressure of the closed canister to 50 psi without changing its volume?...

  • Name Ideal Gas Law, Ratios PV=nRT When we have the same ideal gas at two times,...

    Name Ideal Gas Law, Ratios PV=nRT When we have the same ideal gas at two times, we can express the ratio equation as P,V, n,RT P,V, n, RT a) Which of the following would be the correct way to solve for the second ter if you held the moles of gas and gas pressure constant but allowed the volume and temperature to vary? v,т, V,T V. 2 V,T, 2 T b) If n and V are held constant and the...

  • The ideal gas law states that PV = NkgT where P is the absolute pressure of...

    The ideal gas law states that PV = NkgT where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the gas, and T is its absolute temperature. The constant ko is called the Boltzmann constant and has the value kg = 1.38x10-23J/K. A very common expression of the ideal gas law uses the number of moles, n- N/NA (NA is Avogadro's number, NA=6.021023 per mole). PV...

  • The Ideal Gas Law 808 Review Constants Periodic Table The ideal gas law describes the relationship...

    The Ideal Gas Law 808 Review Constants Periodic Table The ideal gas law describes the relationship among the pressure P. volume V number of moles , and absolute temperature T of an ideal gas. Here is the relationship expressed mathematically PV = nRT Part A How many air molecules are in a 13,5 x 12.0 x 10.0 ft room (28.2 L = 1 ft)? Assume atmospheric pressure of 1.00 atm, a room temperature of 20.0 C, and ideal behavior where...

  • The Sackur-Tetrode Equation gives the entropy of a sample of n moles of monatomic ideal gas...

    The Sackur-Tetrode Equation gives the entropy of a sample of n moles of monatomic ideal gas as a function of its internal energy U and volume V S(U, V) = 5/2 n R + n R In (V/n N_A(4piM U/3nN^2_Ah^2)^3/2) In the equation, R is the gas constant, M is the molar mass, N_4 is Avogadro's number, and h is Plank's constant. The equation can be derived using S = k ln W and directly computing W, the number of...

  • The Ideal Gas Law 4 of 8 Review | Constants I Periodic Table The ideal gas law describes thee relationship among...

    The Ideal Gas Law 4 of 8 Review | Constants I Periodic Table The ideal gas law describes thee relationship among the pressure P. volume V. number of moles n and absolute temperature T'of an ideal gas Here is the relationship expressed mathematicaly Part A PV-nRT How many air molecules are in a 14.0 x 12.0 x 10.0 ft room (28.2 L 200 C and ideal behavior 1 ft? Assume atmospheric pressure of 1.00 atm a room temperature of where...

  • SIEU NU DIEU | | | Introduction to the Ideal Gas Law 10 of 10 >...

    SIEU NU DIEU | | | Introduction to the Ideal Gas Law 10 of 10 > Review l Constants Periodic Table Learning Goal: To apply the ideal gas law to problems involving temperature, pressure, volume, and moles of a gas. The four properties of gases (pressure P. volume V, temperature T. and moles of gas n) are related by a single expression known as the ideal gas law: A balloon is floating around outside your window. The temperature outside is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT