Question

A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds itself in a block of mass 5 kg that is sit

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sol:

Given
m1=0.017 kg
V1=210 m/s
m2=5 kg

(a)
By the law of momentum conservation:-
=>m1u1+m2u2=(m1+m2)v
0.017 x 210 = (0.017+5) x v
v = 0.7116 m/s


(b)
KE(before) = 0.5x m1 x u1^2
= 1/2 x 0.017x (210)^2
= 374.85 J

KE(after) = 1/2 x (m1+m2) x v^2
= 1/2 x 5.017x (0.7116)^2
= 1.270 J

C)
The internal energy of the block bullet system has increased


Hope this helps you..
Please VOTE my answer

Thank you

Add a comment
Know the answer?
Add Answer to:
A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds...

    A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds itself in a block of mass 4 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? Vf = m/s ) Calculate the total translational kinetic energy before and after the collision. Ktrans,i = Ktrans,f = (c) Compare the two results and explain why there is a...

  • A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself...

    A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 1.5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? v= m/s (b) Calculate the kinetic energy of the bullet plus the block before the collision: K; = (c) Calculate the kinetic energy of the bullet plus the block after the...

  • A 10.0 gram bullet traveling at 275 m/s strikes and embeds itself in a 3.490 kg...

    A 10.0 gram bullet traveling at 275 m/s strikes and embeds itself in a 3.490 kg block of wood held on a frictionless table by a spring having k= 50.0 kg/sec^2. Calculate the speed of the block immediately after the collision and the compression of the spring in meters.

  • A bullet of mass Mb is fired horizontally with speed Vi at a wooden block of...

    A bullet of mass Mb is fired horizontally with speed Vi at a wooden block of mass Mw resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed Vf . 1)Which of the following best describes this collision? a)perfectly elastic b)partially inelastic c)perfectly inelastic 2) Which of the following quantities, if any, are...

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a spring with a force constant of 20.0 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.3 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • 2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to...

    2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.4 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block. ___...

  • A 0.00600-kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 19.3-kg door, embedding itself...

    A 0.00600-kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 19.3-kg door, embedding itself 10.4 cm from the side opposite the hinges as shown in the figure below. The 1.00-m wide door is free to swing on its frictionless hinges. (a) if so, evaluate this angular momentum. (if not, enter zero ) (------ kg.m^2/s ?). b) at what angular speed does the door swing open immediately after the collision? (----- rad/s ?). c) calculate the total energy of...

  • A 4.87-g bullet is moving horizontally with a velocity of +358 m/s, where the sign +...

    A 4.87-g bullet is moving horizontally with a velocity of +358 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...

  • A 8.05-g bullet is moving horizontally with a velocity of +345 m/s, where the sign +...

    A 8.05-g bullet is moving horizontally with a velocity of +345 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT