Question

● În lecture we derived the electric field ǎ distance z above the center of thin ring of charge ad ă iniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius R1 and an outer radius R2 (alternatively, you can describe this as a disk of radius R2 with a circular hole of radius R1). Do this two ways: by directly performing an integral over the surface of the ring and by superposition.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear student,

Find this solution.if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.

If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.

Your rating is important to me.

Thanks for asking..let us consider an elenentary Yǐn hage do (22+32)%. 2 2, %2 2, 02 2, o2

Add a comment
Know the answer?
Add Answer to:
● În lecture we derived the electric field ǎ distance z above the center of thin...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. In lecture we derived the electric field a distance z above the center of a...

    4. In lecture we derived the electric field a distance z above the center of a thin ring of charge and a uniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius Ri and an outer rads R2 (alternatively, you can describe this as a disk of rads 2 with a circular hole of radius R). Do this two ways: by directly performing an...

  • Determine the electric eld a distance z above the center of a ring with charge uniformly...

    Determine the electric eld a distance z above the center of a ring with charge uniformly distributed between an inner radius R1 and an outer radius R2 (alternatively, you can describe this as a disk of radius R2 with a circular hole of radius R1). Do this two ways: by directly performing an integral over the surface of the ring and by superposition.

  • 1. In lecture, we derived the electric field a height z above the center of a...

    1. In lecture, we derived the electric field a height z above the center of a thin ring of charge with constant charge per unit length λ. Let's assumie here that λ > 0. Suppose a negative point charge q with mass m s placed a very small distance above the center of the ring. Show that the point charge undergoes simple harmonic motion and find the frequency of small oscillations. Hint: show that near the center of the ring...

  • 1. In lecture, we derived the electric field a height z above the center of a...

    1. In lecture, we derived the electric field a height z above the center of a thin ring of charge with constant charge per unit length λ Let's assume here that λ > 0. Suppose a negative point charge-q with mass m is placed a very small distance above the center of the ring. Show that the point charge undergoes simple harmonic motion and find the frequency of small oscillations. Hint: show that near the center of the ring the...

  • a). Find the electric field along the axis of a thin disk placed in the xy...

    a). Find the electric field along the axis of a thin disk placed in the xy plane, at a distance z from the disk center (the field at distance z from center). It has a uniform charge of density σ and an outer radius R. b). Now consider a similar disk with annular shape, it is the disk in part (a) but with a concentric hole of radius R/2. Calculate the electric field along the z axis. c). Find electric...

  • A thin disk with a circular hole at its center, called an annulus, has inner radius...

    A thin disk with a circular hole at its center, called an annulus, has inner radius R1 and outer radius R2. The disk has a uniform positive surface charge density σ on its surface. (Figure 1) A)The annulus lies in the yz-plane, with its center at the origin. For an arbitrary point on the x-axis (the axis of the annulus), find the magnitude of the electric field E⃗ . Consider points above the annulus in the figure. Express your answer...

  • 1. A very long, uniformly charged cylinder has radius R and charge density p. Determine the...

    1. A very long, uniformly charged cylinder has radius R and charge density \rho. Determine the electric field of this cylinder inside (r<R) and outside (r>R)2. A large, flat, nonconducting surface carries a uniform surface charge density σ. A small circular hole of radius R has been cut in the middle of the sheet. Determine the electric field at a distance z directly above the center of the hole.3. You have a solid, nonconducting sphere that is inside of, and...

  • Please explain and solve 3 Apl 2019 04) (25 points) The figure shows a non-conducting (thin) disk with a hole. The radius of the disk is Ri and the radius of the hole is R1. A total charge Q is un...

    Please explain and solve 3 Apl 2019 04) (25 points) The figure shows a non-conducting (thin) disk with a hole. The radius of the disk is Ri and the radius of the hole is R1. A total charge Q is uniformly distributed on its surface electric potential at infinity is zero, what is the el distance x from its center? (20 points) b) Use electric potential to determine the electric field at point P. (S points) . Assuming that the...

  • 1. Find the electric field (in vacuum) as a function of position z along the axis...

    1. Find the electric field (in vacuum) as a function of position z along the axis of a uniformly charged disk of outer radius R with a hole of radius Ri in its centre. The charge per unit area on the disk is σ. 2. A straight rod, with uniform charge λ per unit length, lies along the z axis from z=11 to z=12. (Thus, the length of the rod is 12-11.) Find the x and y components of the...

  • A point charge q is located a distance r from the center of a conducting shell...

    A point charge q is located a distance r from the center of a conducting shell with inner radius R​1​​ and outer radius R​2​​. What is the electric potential at the center of the shell, assuming r <R​1​​? Question 7 A point charge q is located a distance r from the center of a conducting shell with inner radius R1 and outer radius R2. What is the electric potential at the center of the shell, assuming r< R1? Select the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT