Question

a). Find the electric field along the axis of a thin disk placed in the xy...

a). Find the electric field along the axis of a thin disk placed in the xy plane, at a distance z from the disk center (the field at distance z from center). It has a uniform charge of density σ and an outer radius R.

b). Now consider a similar disk with annular shape, it is the disk in part (a) but with a concentric hole of radius R/2. Calculate the electric field along the z axis.

c). Find electric field at a distance z from an infinite plane of charge with surface charge density σ

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
a). Find the electric field along the axis of a thin disk placed in the xy...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a thin flat insulating disk of radius R with a hole in the center of...

    Consider a thin flat insulating disk of radius R with a hole in the center of radius R/2. If this thin annular disk has uniform surface charge density σ, what is the electric potential at a distance x from the center of the hole along the central axis?

  • 1. Find the electric field (in vacuum) as a function of position z along the axis...

    1. Find the electric field (in vacuum) as a function of position z along the axis of a uniformly charged disk of outer radius R with a hole of radius Ri in its centre. The charge per unit area on the disk is σ. 2. A straight rod, with uniform charge λ per unit length, lies along the z axis from z=11 to z=12. (Thus, the length of the rod is 12-11.) Find the x and y components of the...

  • 1. Find the electric field (in vacuum) as a function of position z along the axis...

    1. Find the electric field (in vacuum) as a function of position z along the axis of a uniformly charged disk of outer radius R with a hole of radius R in its centre. The charge per unit area on the disk is σ. 2, A straight rod, with uniform charge λ per unit length, lies along the z axis from z=11 to z=12-(Thus, the length of the rod is l2-11.) Find the x and y components of the electric...

  • The total electric field at a point on the axis of a uniformly charged disk, which...

    The total electric field at a point on the axis of a uniformly charged disk, which has a radius R and a uniform charge density of σ, is given by the following expression, where x is the distance of the point from the disk. (R2 + x2)1/2 Consider a disk of radius R-3.18 cm having a uniformly distributed charge of +4.83 C. (a) Using the expression above, compute the electric field at a point on the axis and 3.12 mm...

  • A thin disk with a circular hole at its center, called an annulus, has inner radius...

    A thin disk with a circular hole at its center, called an annulus, has inner radius R1 and outer radius R2. The disk has a uniform positive surface charge density σ on its surface. (Figure 1) A)The annulus lies in the yz-plane, with its center at the origin. For an arbitrary point on the x-axis (the axis of the annulus), find the magnitude of the electric field E⃗ . Consider points above the annulus in the figure. Express your answer...

  • 4. In lecture we derived the electric field a distance z above the center of a...

    4. In lecture we derived the electric field a distance z above the center of a thin ring of charge and a uniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius Ri and an outer rads R2 (alternatively, you can describe this as a disk of rads 2 with a circular hole of radius R). Do this two ways: by directly performing an...

  • Calculate the electric field E at P: (0, 0, 2) created by a disk carrying a...

    Calculate the electric field E at P: (0, 0, 2) created by a disk carrying a uniform surface density of charge σ. The disk is in the x-y plane, centered at the origin. It has a circular hole in the middle, in which there is no charge. The disk's inner radius is a, and its outer radius is b. Express your result in terms of the disk's total charge q, and check that in the limit z b, E approximates...

  • The total electric field at a point on the axis of a uniformly charged disk, which...

    The total electric field at a point on the axis of a uniformly charged disk, which has a radius R and a uniform charge density of σ, is given by the following expression, where x is the distance of the point from the disk. (R2 + x2)1/2 Consider a disk of radius R-3.27 cm having a uniformly distributed charge of +5.18 C. (a) Using the expression above, compute the electric field at a point on the axis and 3.30 mm...

  • ● În lecture we derived the electric field ǎ distance z above the center of thin...

    ● În lecture we derived the electric field ǎ distance z above the center of thin ring of charge ad ă iniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius R1 and an outer radius R2 (alternatively, you can describe this as a disk of radius R2 with a circular hole of radius R1). Do this two ways: by directly performing an integral...

  • Answer is Below. Problem 3: Consider a disk of radius R in the xy-plane with a...

    Answer is Below. Problem 3: Consider a disk of radius R in the xy-plane with a non-uniform surface charge density ơ(r)-ar, where a > 0 is a constant. Determine the electric field at a point z above the disk, along its axis of symmetry

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT