Question

Problem 15. (20 pts) Consider a damped driven oscillator with the following parameters s-100 N/m b=0.5kg/s m= 1 kg Fo=2N A) Find the resonant frequency, w. B) Find the damping rate y C) What is the quality factor Q for this oscillator? D) Is this oscillator lightly damped, critically damped, or heavily damped? E) Find the steady state amplitude when the oscillator is driven on resonance (Ω=w). F) Find the steady state amplitude when Ω_w+γ/2. G) Find the average power delivered to the oscillator when the oscillator is driven on resonance (Ω H) Find the average power delivered to the oscillator when Ω_w+ γ/2. I) Sketch the average power delivered vs driving frequency curve for this oscillator. )

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem 15. (20 pts) Consider a damped driven oscillator with the following parameters s-100 N/m b=0.5kg/s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 17. A) In steady state, does a damped, driven oscillator oscillate at the frequency of...

    Problem 17. A) In steady state, does a damped, driven oscillator oscillate at the frequency of the driving force, the natural frequency of the oscillator or neither of these frequencies? B) Ella Fitzgerald could break a wine glass with her voice but Louis Armstrong could not. Is this likely because Ella could sing louder than Louis? Justify your answer. C) What happens to the width of the average-power-delivered vs driving frequency curve if the damping is increased? D) What happens...

  • ineers can determine properties of a structure that is modeled as damped spring oscillator-such as a...

    ineers can determine properties of a structure that is modeled as damped spring oscillator-such as a bridge-by applying a driving force to it. A weakly damped spring oscillator of mass 0.242 kg is driven by a sinusoidal force at the oscillator's resonance frequency of 34.0 Hz. Find the value of the spring constant Number N/ m The amplitude of the driving force is 0.471 N and the amplitude of the oscillator's steady-state motion in response to this driving force is...

  • 1. Consider a weakly-damped, driven SHO. Show that the driving frequency for which the steady-state amplitude...

    1. Consider a weakly-damped, driven SHO. Show that the driving frequency for which the steady-state amplitude is v the steady-state amplitude at the resonant frequency is given by ω 00 ± ßV3.

  • 2. A damped harmonic oscillator with m 1.00 kg, k 2500 N/m, and b 42.4 kg/s...

    2. A damped harmonic oscillator with m 1.00 kg, k 2500 N/m, and b 42.4 kg/s is subject to a driving force given by Fo cos wt. (a) what value of ω results in the maximum stead-state amplitude (ie, resonance)? (b) What is the quality factor Q of this oscillator?

  • 3. A damped harmonic oscillator is driven by an external force of the form mfo sin...

    3. A damped harmonic oscillator is driven by an external force of the form mfo sin ot. The equation of motion is therefore x + 2ßx + ω x-fo sin dot. carefully explaining all steps, show that the steady-state solution is given by x(t) A() sin at 8) Find A (a) and δ(w).

  • A driving force of the form F(t) = (0.212 N) sin (2xft) acts on a weakly...

    A driving force of the form F(t) = (0.212 N) sin (2xft) acts on a weakly damped spring oscillator with mass 6.98 kg, spring constant 362 N/m, and damping constant 0.261 kg/s. What frequency fo of the driving force will maximize the response of the oscillator? fo = Hz Find the amplitude Ao of the oscillator's steady-state motion when the driving force has this frequency Find the amplitude Ap of the oscillator's steady-state motion when the driving force has this...

  • 1. The exponential damping factor K of a spring is 1/10 the critical value. The spring...

    1. The exponential damping factor K of a spring is 1/10 the critical value. The spring has an undamped frequency of wo. A mass m is attached to the spring. Find a) The resonant frequency in terms of w. (3 marks) b) The quality factor (1 mark) c) The phase angle when the spring is driven by a force F. at a driving frequency (1 marks) d) The steady-state amplitude of oscillation when it is driven at this frequency in...

  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT