Problem

The Harmonic Oscillator with Modified Damping Autonomous second-order differential equa...

The Harmonic Oscillator with Modified Damping

Autonomous second-order differential equations are studied numerically by reducing them to first-order systems with two dependent variables. In this lab you will use the computer to analyze three somewhat related second-order equations. In particular, you will analyze phase planes and y(t)- and v(t)-graphs to describe the long-term behavior of the solutions.

In Sections 2.1 and 2.3, we discuss the most classic of all second-order equations, the harmonic oscillator. The harmonic oscillator is

It is an example of a second-order, homogeneous, linear equation with constant coefficients. In the text we explain how this equation is used to model the motion of a spring. The force due to the spring is assumed to obey Hooke’s law (the force is proportional to the amount the spring is compressed or stretched). The force due to damping is assumed to be proportional to the velocity. In your report you should describe the motion of the spring assuming certain values of m, b, and k. (A table of values of the parameters is given below. Your instructor will tell you what values of m, b, and k to consider.) Your report should discuss the following:

Your report: Address the questions in each item above in the form of a short essay. Be particularly sure to describe the behavior of the solution and the corresponding behavior of the mass-spring system. You may use the phase planes and graphs of y(t) to illustrate the points you make in your essay. (However, please remember that, although one good illustration may be worth 1000 words, 1000 illustrations are usually worth nothing.)

(Nonlinear second-order equation) Finally, consider a somewhat related second-order equation where the damping coefficient b is replaced by the factor (y2α); that is,

Is it reasonable to interpret this factor as some type of damping? Provide a complete description of the long-term behavior of the solutions. Are the solutions periodic? If so, what does the period seem to be? Explain why this equation is not a good model for something like a mass-spring system. Give an example of some other type of physical or biological phenomenon that could be modeled by this equation.

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search
Solutions For Problems in Chapter LAB2.3