Problem

The voltage v(t) shown in Fig. P7.85a is given by the graph shown in Fig. P7.85b. If iL(0)...

The voltage v(t) shown in Fig. P7.85a is given by the graph shown in Fig. P7.85b. If iL(0) = 0, answer the following questions:

(a) How much energy is stored in the inductor at t = 3 s?

(b) How much power is supplied by the source at t = 4 s?

(c) What is i(t = 6 s)?

(d) How much power is absorbed by the inductor at t = 3 s?

Figure P7.85

Step-by-Step Solution

Solution 1

(a)

Refer Figure \(\mathrm{P} 7.77 \mathrm{~b}\) in text book.

Determine energy is stored in inductor at \(t=3 s\).

Energy stored in the inductor is \(W_{L}=\frac{1}{2} L i_{L}^{2}\)

But

$$ i_{L}(t)=\frac{1}{L} \int v_{L} d t $$

At \(t=3 \mathrm{~s}\) determine \(i_{L}(t)\).

$$ \begin{aligned} i_{L}(3) &=\frac{1}{L} \int v_{L} d t \\ &=\frac{1}{2} \int_{0}^{2} 10 d t+\frac{1}{2} \int_{2}^{3}-10 d t \\ &=\frac{1}{2}[10 t]_{0}^{2}-\frac{1}{2}[10 t]_{2}^{3} \end{aligned} $$

Simplify further.

$$ \begin{aligned} i_{L}(3) &=\left(\frac{1}{2}[10(2)]-\frac{1}{2}[10(0)]\right)-\left(\frac{1}{2}[10(3)]-\frac{1}{2}[10(2)]\right) \\ &=10-0-15+10=20-15 \\ &=5 \mathrm{~A} \end{aligned} $$

Energy stored in inductor is,

$$ \begin{aligned} W_{L} &=\frac{1}{2} L i_{L}^{2} \\ &=\frac{1}{2}(2)(5)^{2} \\ &=25 \mathrm{~J} \end{aligned} $$

(b)

Determine power is supplied by the source at \(t=4 s\).

Power supplied by the source is,

$$ \begin{aligned} P_{S}(t) &=v(t) i(t) \\ &=v(t)\left[i_{L}(t)+\frac{v(t)}{R}\right] \end{aligned} $$

But

$$ \begin{aligned} i_{L}(t) &=\frac{1}{L} \int v_{L} d t i_{L}(4) \\ &=\frac{1}{2} \int_{0}^{2} 10 d t+\frac{1}{2} \int_{2}^{4}-10 d t=\frac{1}{2}[10 t]_{0}^{2}-\frac{1}{2}[10 t]_{2}^{4} \\ &=\left(\frac{1}{2}[10(2)]-\frac{1}{2}[10(0)]\right)-\left(\frac{1}{2}[10(4)]-\frac{1}{2}[10(2)]\right) \end{aligned} $$

Simplify further.

$$ \begin{aligned} i_{L}(t) &=10-0-10-0 \\ &=0 \mathrm{~A} \end{aligned} $$

Then

$$ \begin{aligned} P_{S}(t) &=v(t)\left[i_{L}(t)+\frac{v(t)}{R}\right] \\ &=v(t)\left[0+\frac{v(t)}{R}\right] \\ &=\frac{v(t)^{2}}{R} \end{aligned} $$

Simplify further.

$$ \begin{aligned} P_{S}(t) &=\frac{10^{2}}{2} \\ &=\frac{100}{2} \\ &=50 \mathrm{~W} \end{aligned} $$

(c)

Determine current \(i(t)\) at \(t=6 s\).

$$ i(t)=i_{R}+i_{L} $$

At \(t=6 s\) the current through resister is zero.

$$ \begin{aligned} i_{L}(t) &=\frac{1}{L} \int v_{L} d t \\ i_{L}(6) &=\frac{1}{2} \int v_{L} d t \\ &=\frac{1}{2} \int_{0}^{2} 10 d t+\frac{1}{2} \int_{2}^{5}-10 d t \\ &=\frac{1}{2}[10 t]_{0}^{2}-\frac{1}{2}[10 t]_{2}^{5} \end{aligned} $$

Simplify further.

$$ \begin{aligned} i_{L}(6) &=\left(\frac{1}{2}[10(2)]-\frac{1}{2}[10(0)]\right)-\left(\frac{1}{2}[10(5)]-\frac{1}{2}[10(2)]\right) \\ &=10-0-25+10 \\ &=20-25 \\ &=-5 \mathrm{~A} \\ i_{L}(6) &=-5 \mathrm{~A} \end{aligned} $$

Determine total current.

$$ \begin{aligned} i(t) &=i_{R}+i_{L} \\ &=0+(-5) \\ &=-5 \mathrm{~A} \end{aligned} $$

(d)

Determine power is absorbed by inductor.

$$ \begin{aligned} &P_{L}=v(t) i_{L}(t) \\ &i_{L}(3)=\frac{1}{L} \int v_{L} d t \\ &=\frac{1}{2} \int_{0}^{2} 10 d t+\frac{1}{2} \int_{2}^{3}-10 d t \\ &=\frac{1}{2}[10 t]_{0}^{2}-\frac{1}{2}[10 t]_{2}^{3} \end{aligned} $$

Simplify further.

$$ \begin{aligned} &=\left(\frac{1}{2}[10(2)]-\frac{1}{2}[10(0)]\right)-\left(\frac{1}{2}[10(3)]-\frac{1}{2}[10(2)]\right) \\ &=10-0-15+10 \\ &=20-15 \\ &=5 \mathrm{~A} \end{aligned} $$

And

$$ v(3)=-10 $$

Then power absorbed by the inductor is,

$$ \begin{aligned} P_{L}(3) &=v(t) i_{L}(t) \\ &=(-10)(5) \\ &=-50 \mathrm{~W} \\ P_{L}(3) &=-50 \mathrm{~W} \end{aligned} $$

Add your Solution
Textbook Solutions and Answers Search