Problem

Hydrazine would be expected to adopt a conformation in which the NH bonds stagger. There...

Hydrazine would be expected to adopt a conformation in which the NH bonds stagger. There are two likely candidates, one with the lone pairs on nitrogen anti to each other and the other with the lone pairs gauche:

On the basis of the same arguments made in VSEPR theory (electron pairs take up more space than bonds) you might expect that anti hydrazine would be the preferred structure.

a. Obtain energies for the anti and gauche conformers of hydrazine using the HF/6-31G* model. Which is the more stable conformer? Is your result in line with what you expect from VSEPR theory?

You can rationalize your result by recognizing that when electron pairs interact they form combinations, one of which is stabilized (relative to the original electron pairs) and one of which is destabilized. The extent of destabilization is greater than that of stabilization, meaning that overall interaction of two electron pairs is unfavorable energetically:

b. Measure the energy of the highest occupied molecular orbital (the HOMO) for each of the two hydrazine conformers. This corresponds to the higher energy (destabilized) combination of electron pairs. Which hydrazine conformer (anti or gauche) has the higher HOMO energy? Is this also the higher energy conformer? If so, is the difference in HOMO energies comparable to the difference in total energies between the conformers?

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search
Solutions For Problems in Chapter 15