Problem

A typical laboratory diffraction grating has 5.00 × 103 lines/cm, and these lines are co...

A typical laboratory diffraction grating has 5.00 × 103 lines/cm, and these lines are contained in a 3.50-cm width of grating. (a) What is the chromatic resolving power of such a grating in the first order? (b) Could this grating resolve the lines of the sodium doublet (see Section 36.5) in the first order? (c) While doing spectral analysis of a star, you are using this grating in the second order to resolve spectral lines that are very close to the 587.8002-nm spectral line of iron. (i) For wavelengths longer than the iron line, what is the shortest wavelength you could distinguish from the iron line? (ii) For wavelengths shorter than the iron line, what is the longest wavelength you could distinguish from the iron line? (iii) What is the range of wavelengths you could not distinguish from the iron line?

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search