Problem

Develop an M-file to locate a minimum with the golden-section search. Rather than using th...

Develop an M-file to locate a minimum with the golden-section search. Rather than using the maximum iterations and Eq. (7.9) as the stopping criteria, determine the number of iterations needed to attain a desired tolerance. Test your function by solving Example 7.2 using Ea,d= 0.0001.

Equation (7.9):

Example 7.2:

Golden-Section Search

Problem Statement. Use the golden-section search to find the minimum of

within the interval from xl = 0 to xu = 4.

Solution. First, the golden ratio is used to create the two interior points:

The function can be evaluated at the interior points:

Because f (x2) < f (x1), our best estimate of the minimum at this point is that it is located at x = 1.5279 with a value of f (x) = –1.7647. In addition, we also know that the minimum is in the interval defined by xl, x2, and x1. Thus, for the next iteration, the lower bound remains xl = 0, and x1 becomes the upper bound, that is, xu = 2.4721. In addition, the former x2 value becomes the new x1, that is, x1 = 1.5279. In addition, we do not have to recalculate f (x1), it was determined on the previous iteration as f (1.5279) = –1.7647.

All that remains is to use Eqs. (7.8) and (7.7) to compute the new value of d and x2:

The function evaluation at x2 is f (0.9943) = −1.5310. Since this value is less than the function value at x1, the minimum is f (1.5279) = −1.7647, and it is in the interval prescribed by x2, x1, and xu. The process can be repeated, with the results tabulated here:

Note that the current minimum is highlighted for every iteration. After the eighth iteration, the minimum occurs at x = 1.4427 with a function value of −1.7755. Thus, the result is converging on the true value of −1.7757 at x = 1.4276.

Equation (7.8):

Equation (7.7):

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search