Problem

A multiple-slit aperture has (1) N = 2, (2) N = 10, and (3) N = 15,000 slits. The aperture...

A multiple-slit aperture has (1) N = 2, (2) N = 10, and (3) N = 15,000 slits. The aperture is placed directly in front of a lens of focal length 2 m. The distance between slits is 0.005 mm and the slit width is 0.001 mm for each case. The incident plane wavefronts of light are of wavelength 546 nm. Find, for each case, (a) the separation on the screen between the zeroth- and first-order maxima; (b) the number of bright fringes (principal maxima) that fall under the central diffraction envelope; (c) the width on the screen of the central interference fringe.

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search
Solutions For Problems in Chapter 12