Problem

A rotating viscometer consists of two concentric cylinders—an inner cylinder of radius Ri...

A rotating viscometer consists of two concentric cylinders—an inner cylinder of radius Ri rotating at angular velocity (rotation rate) ωi, and a stationary outer cylinder of inside radius Ro. In the tiny gap between the two cylinders is the fluid of viscosity μ. The length of the cylinders (into the page in Fig. P10–24) is L. L is large such that end effects are negligible (we can treat this as a two-dimensional problem). Torque (T) is required to rotate the inner cylinder at constant speed. (a) Showing all of your work and algebra, generate an approximate expression for T as a function of the other variables. (b) Explain why your solution is only an approximation. In particular, do you expect the velocity profile in the gap to remain linear as the gap becomes larger and larger (i.e., if the outer radius Ro were to increase, all else staying the same)?

FIGURE P10–24:

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search