Problem

Suppose it is possible to dig a smooth tunnel through the earth from a city at A to a ci...

Suppose it is possible to dig a smooth tunnel through the earth from a city at A to a city at B as shown. By the theory of gravitation, any vehicle C of mass m placed within the tunnel would be subjected to a gravitational force which is always directed toward the center of the earth D. This force F has a magnitude that is directly proportional to its distance r from the earth's center. Hence, if the vehicle has a weight of W = mg when it is located on the earth's surface, then at an arbitrary location r the magnitude of force F is F = (mg / R)r , where R = 6328 km, the radius of the earth. If the vehicle is released from rest when it is at B, x = s = 2 Mm, determine the time needed for it to reach A, and the maximum velocity it attains. Neglect the effect of the earth's rotation in the calculation and assume the earth has a constant density. Hint: Write the equation of motion in the x direction, noting that r cos θ = x Integrate, using the kinematic relation v dv = a dx, then integrate the result using v = dx/dt.

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search