Problem

(a) Suppose a charge distribution ρ1(r) produces a potential V1(r), and some other charg...

(a) Suppose a charge distribution ρ1(r) produces a potential V1(r), and some other charge distribution ρ2(r) produces a potential V2(r). [The two situations may have nothing in common, for all I care—perhaps number 1 is a uniformly charged sphere and number 2 is a parallel-plate capacitor. Please understand that ρ1 and ρ2 are not present at the same time; we are talking about two different problems, one in which only ρ1 is present, and another in which only ρ2 is present.] Prove Green’s reciprocity theorem:25

[Hint: Evaluate ? E1 . E2 dτ two ways, first writing E1 = −V1 and using integration by parts to transfer the derivative to E2, then writing E2 = −V2 and transferring the derivative to E1.]

(b) Suppose now that you have two separated conductors (Fig. 3.41). If you charge up conductor a by amount Q (leaving b uncharged), the resulting potential of b is, say, Vab. On the other hand, if you put that same charge Q on conductor b (leaving a uncharged), the potential of a would be Vba . Use Green’s reciprocity theorem to show that Vab = Vba (an astonishing result, since we assumed nothing about the shapes or placement of the conductors).

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search