Problem

In our example of the free-falling bungee jumper, we assumed that the acceleration due to...

In our example of the free-falling bungee jumper, we assumed that the acceleration due to gravity was a constant value of 9.81 m/s2. Although this is a decent approximation when we are examining falling objects near the surface of the earth, the gravitational force decreases as we move above sea level. A more general representation based on Newton’s inverse square law of gravitational attraction can be written as

where g(x) = gravitational acceleration at altitude x (in m) measured upward from the earth’s surface (m/s2), g(0) = gravitational acceleration at the earth’s surface (≅ 9.81 m/s2), and R = the earth’s radius (≅ 6.37 × 106 m).

(a) In a fashion similar to the derivation of Eq. (1.8), use a force balance to derive a differential equation for velocity as a function of time that utilizes this more complete representation of gravitation. However, for this derivation, assume that upward velocity is positive.


(b) For the case where drag is negligible, use the chain rule to express the differential equation as a function of altitude rather than time. Recall that the chain rule is


(c) Use calculus to obtain the closed form solution where υ = υ0 at x = 0.


(d) Use Euler’s method to obtain a numerical solution from x = 0 to 100,000 m using a step of 10,000 m where the initial velocity is 1500 m/s upward. Compare your result with the analytical solution.

Equation 1.8:

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search
Solutions For Problems in Chapter 1